本书基于MATLAB6.5正式版(Release13),为读者提供了使用MATLAB的实际性指点。
本书首要介绍了MATLAB中与抑制工程相关的6个底子货物箱:体系辨识货物箱、抑制体系货物箱、鲁棒抑制货物箱、模子料想抑制货物箱、模糊逻辑货物箱以及非线性抑制方案模块,同时提供了MATLAB中的一些底子学识。
在教学6个货物箱的进程中,本书还教学了一些工程使用方面的配景学识,并对于每一个函数的成果、语法以及参数做了详尽的阐发,对于许多弥留的函数都给出了详尽的示例法度圭表标准。
本书能够作为低级院校抑制工程业余本科生、钻研生课本使用,也可作为广大科研工程本领人员的参考用书。
第1章MATLAB底子1.1MATLAB的汗青1.1.1MATLAB的暴发1.1.2MATLAB的阻滞1.2MATLAB体系组成1.2.1MATLAB的体系组成1.2.2MATLAB货物箱及使用介绍1.3末了使用MATLAB1.3.1MATLAB的启动1.3.2样例1.3.3MATLAB末了学识第2章MATLAB体系辨识货物箱2.1体系辨识的原理及辨识模子的简介2.1.1底子原理2.1.2罕用的模子类2.2体系辨识货物箱函数2.2.1模子建树以及转换的函数介绍2.2.2非参数模子类的辨识函数介绍2.2.3参数模子类的辨识函数介绍2.2.4递推参数模子辨识函数介绍2.2.5模子验证与仿真函数介绍2.2.6其余罕用函数介绍2.3体系辨识货物箱图形界面2.3.1数据视图2.3.2操作遴选2.3.3模子视图第3章抑制体系货物箱3.1LTI体系模子及转换3.1.1LTI模子3.1.2LTI货物及其属性3.1.3LTI模子函数3.1.4模子检测函数3.2外形空间的实现3.2.1外形空间的实现3.2.2外形空间的实现的函数3.3体系时域照料3.3.1体系时域照料3.3.2体系时域提前3.4体系频率照料3.5顶点配置配备枚举3.6模子的综合处置3.6.1模子的转换3.6.2模子的毗邻3.6.3模子降阶3.7LQG方案3.8GUI函数介绍第4章鲁棒抑制货物箱4.1鲁棒抑制实际及鲁棒抑制货物箱简介4.1.1鲁棒抑制实际概述4.1.2鲁棒抑制货物箱底子数据结构4.2体系模子建树与转换货物4.2.1模子建树货物4.2.2模子转换货物4.3鲁棒抑制货物箱成果函数4.3.1Riccati方程求解4.3.2Riccati方程前提数4.3.3矩阵的Schur方式4.4多变量波特图4.4.1频率照料的特色增益/相位波特图4.4.2络续以及离散体系的怪异值波特图4.4.3结构怪异值波特图4.5矩阵因子化本领4.6模子降阶方式4.6.1Schur相对于倾向模子降阶方式4.6.2失调模子降阶4.6.3最优Hartkel最小迫近降阶4.7鲁棒抑制箱综合方式4.7.1离散以及络续征兆的H2综合4.7.2离散以及络续征兆的H∞综合4.7.3H∞综合的丁迭代方式4.7.4H2以及H∞范数4.7.5LQC优化抑制综合4.7.6LQG回路传输规复4.7.7综合4.7.8youla参数化4.8示例第5章模子料想抑制货物箱5.1体系模子辨识函数5.1.1数据向量或者矩阵的归一化5.1.2基于线性回归方式的脉冲照料模子辨识5.1.3脉冲照料模子转换为阶跃照料模子5.1.4模子的校验5.2体系矩阵信息及画图函数5.3模子转换函数5.4模子建树以及毗邻函数5.5抑制器方案与仿真5.5.1基于MPC阶跃照料的抑制器方案与仿真5.5.2基于MPC外形空间模子的抑制器方案与仿真5.6体系阐发函数5.7模子料想抑制货物箱成果函数第6章模糊逻辑货物箱6.1模糊逻辑实际简介6.1.1模糊群集6.1.2模糊关连6.1.3模糊推理6.2MATLAB模糊逻辑货物箱6.2.1模糊附属度函数6.2.2模糊推理体系数据管理函数6.3逻辑货物箱的图形用户界面6.4模糊推理体系的低级使用6.5模糊逻辑货物箱接口及示例函数第7章非线性抑制方案模块7.1NCD模块的使用7,1.1建树闭环体系方框图7.1.2配置解放前提7.1.3末了优化盘算7.2NCD模块使用实例
2023/5/13 21:08:30 10.22MB MATLAB 控制工程 工具箱 技术手册
1
统计判断中文版课源头根基书第二版张忠占傅莺莺译概率论底子估量以及假如查验回归实际
2023/5/12 2:18:40 63.98MB 统计
1
matlab罕用代码大全,帮手你科研,论文实证阐发,数模竞赛第44章条理阐发法第45章灰色联系瓜葛度第46章熵权法第47章主成份阐发第48章主成份回归第49章偏最小二乘第50章垂垂回归阐发第51章模拟退火第52章RBF,GRNN,PNN-神经收集第53章相助神经收集与SOM神经收集第54章蚁群算法tsp求解第55章灰色料想GM1-1第56章模糊综合评估第57章交织验证神经收集第58章多项式拟合plotfit第59章非线性拟合lsqcurefit第60章kmeans聚类第61章FCM聚类第62章arima功夫序列第63章topsis第1章BP神经收集的数据分类——语音特色信号分类第2章BP神经收集的非线性体系建模——非线性函数拟合第3章遗传算法优化BP神经收集——非线性函数拟合第4章神经收集遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器方案——公司财政预警建模第6章PID神经元收集解耦抑制算法——多变量体系抑制第7章RBF收集的回归--非线性函数回归的实现第8章GRNN收集的料想----基于狭义回归神经收集的货运量料想第9章离散Hopfield神经收集的遥想影像——数字识别第10章离散Hopfield神经收集的分类——高校科研才气评估第11章络续Hopfield神经收集的优化——遨游商下场优化盘算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类料想——意大利葡萄酒品种识别第15章SVM的参数优化——若何更好的提升分类器的成果第16章基于SVM的回归料想阐发——上证指数收盘指数料想.第17章基于SVM的信息粒化时序回归料想——上证指数收盘指数变更趋向以及变更空间料想第18章基于SVM的图像联系-真玄色图像联系第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate货物箱及GUI版本介绍与使用第21章自结构相助收集在方式分类中的使用—患者癌症发病料想第22章SOM神经收集的数据分类--柴油机缺陷诊断第23章Elman神经收集的数据料想----电力负荷料想模子钻研第24章概率神经收集的分类料想--基于PNN的变压器缺陷诊断第25章基于MIV的神经收集变量遴选----基于BP神经收集的变量遴选第26章LVQ神经收集的分类——乳腺肿瘤诊断第27章LVQ神经收集的料想——人脸朝向识别第28章遴选树分类器的使用钻研——乳腺癌诊断第29章极限学习机在回归拟合及分类下场中的使用钻研——比力试验第30章基于随机森林脑子的组合分类器方案——乳腺癌诊断第31章脑子进化算法优化BP神经收集——非线性函数拟合第32章小波神经收集的功夫序列料想——短时交通流量料想第33章模糊神经收集的料想算法——嘉陵江水质评估第34章狭义神经收集的聚类算法——收集入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化盘算——建模自变量降维第37章基于灰色神经收集的料想算法钻研——定单需要料想第38章基于Kohonen收集的聚类算法——收集入侵聚类第39章神经收集GUI的实现——基于GUI的神经收集拟合、方式识别、聚类第40章动态神经收集功夫序列料想钻研——基于MATLAB的NARX实现第41章定制神经收集的实现——神经收集的本能化建模与仿真第42章并背运算与神经收集——基于CPU/GPU的并行神经收集运算第43章神经收集高效编程本领——基于MATLABR2012b新版本特色的谈判
2023/5/9 23:33:27 12.05MB matlab 神经网络
1
本书内容搜罗低等概率盘算、随机变量及其漫衍、数字特色、多维随机向量、极限度理、统计学底子不雅点、点估量与区间估量、假如查验、回归相关阐发、方差阐发等。
书落选入了部份在实际以及使用上弥留,但普通感应逾越本课程规模的资料,以备教者以及学者遴选。
本书并重底子不雅点的阐释,同时,在设定的数学水平内,力争做到叙述松散。
书中精选了百余道习题,并在书末附有揭示与解答。
本书可作为低级学校理工科非数学系的概率统计课程课本,也可供具备至关数学豫备(低等微积分及大批矩阵学识)的读者自修之用。
目录总序序第1章责任的概率1.1概率是甚么1.2古典概率盘算1.3责任的运算、前提概率与自力性习题第2章随机变量及概率漫衍2.1一维随机变量2.2多维随机变量(随机向量)2.3前提概率漫衍与随机变量的自力性2.4随机变量的函数的概率漫衍附录习题第3章随机变量的数字特色3.1数学期望(均值)与中位数3.2方差与矩3.3协方差与关连系数3.2方差与矩3.3协方差与关连系数3.4大数定理以及中间极限度理习题第4章参数估量4.1数理统计学的底子不雅点4.2矩估量、极大似然估量以及贝叶斯估量4.3点估量的优同性原则4.4区间估量习题第5章假如查验5.1下场提法以及底子不雅点5.2弥留参数查验5.3拟合优度查验附录习题第6章回归、相关与方差阐发6.1回归阐发的底子不雅点6.2一元线性回归6.3多元线性回归6.4相关阐发6.5方差阐发附录习题习题揭示与解答附表
2023/5/5 22:19:25 85.91MB 概率论与数理统计 陈希孺 pdf
1
自己用过,比力好用,高版本的不存
2023/5/4 17:22:43 7.08MB 曲线拟合
1
本书是天下低级学校初次出书使用的《倾向实际与数据处置》课本,自1981年出书第1版以来,深受低级学校以及科研院所驱散使用,频频修订重版,本书为第6版。
第6版在相持原课本特色底子上,对于部份内容作了更正,以顺应更多业余的教学需要。
本书叙述了迷信试验以及工程实际中罕用的动态丈量以及动态丈量的倾向实际以及数据处置,并重点松散多大宗、机械量以及相关物理量丈量举行介绍,内容搜罗:绪论、倾向的底子性子与处置、倾向的剖析与调配、丈量不用定度、线性参数的最小二乘法处置、回归阐发、动态测试与数据处置底子方式等。
各章附有大宗习题供选用,书末附录为罕用数表。
2023/5/3 14:57:51 39.85MB 误差分析
1
线性回归模子;
方差阐发;
协方差阐发;
稠浊效应模子;
矩阵论豫备学识;
多元正态漫衍;
参数估量;
假如查验。
可作为低级院校数学迷信系、数理统计系或者统计系、生物统计系、计量经济系等无关学科的高年级本科生、硕士或者博士学位的学位课或者选修课课本。
2023/5/3 12:49:55 10.63MB 数据分析 数学 统计 计量经济
1
行使matlab实现回归阐发生业,能够作为数学以及盘算机相关业余的作业
2023/5/2 23:57:58 157KB matlab 回归分析
1
DataFit是OakdaleEngineering公司开拓的一个数据画图、数据拟合大概回归、统计阐发的数学软件包。
它具备约莫、易于使用、速率快等特色,是举行数据处置的一个好助手。
Datafit的装置方式起首进入datafit的装置目录,它有如下多少个文件:掀开SN.TXT文件,并将软件序列号COPY到剪裁板。
2023/5/1 15:43:26 7.85MB datafit 9.0 破解版
1
Eviews是EconometricsViews的缩写,直译为计量经济学查核,每一每一称为计量经济学软件包。
它的本意是对于社会经济关连与经济行为的数目法则,付与计量经济学方式与本领举行“查核”。
另外Eviews也是美国QMS公司研制的在Windows下特意处置数据阐发、回归阐发以及料想的货物。
使用Eviews能够快捷地从数据中探究出统计关连,并用患上到的关连去料想数据的未来值。
Eviews的使用规模搜罗:迷信试验数据阐发与评估、金融阐发、宏不雅经济料想、仿真、销售料想以及资源阐发等。
2023/4/30 1:29:45 30.7MB 计量软件
1
共 492 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡