该代码支持音频的实时传输,采用UDP协议方式,当收到音频数据时自动发送到接收端
2024/11/14 22:39:30 6.1MB QT C++ 音频实时传输
1
参考本代码可熟悉socket基本使用方法,及文件传输的基本功能实现。
目录:1_code:源代码目录。
2_测试用例:包含正常功能,及非法入参测试,试用可执行文件功能时可参考截图中的参数下发。
3_工程及可执行文件:包含Linux编译的可执行文件,及Windows的VC6.0下的工程。
2024/11/14 22:05:57 1.88MB socket 文件传输
1
波分复用(WDM)是当前光纤通信扩容的主要手段。
WDM波分复用器传输的基本元件是光学滤波器,WDM器件按硬件产品的工作原理分类,可分为滤波片式(Filter)、熔融拉锥式(FBT)和阵列波导光栅(AWG)。
本文解析TFF型三端口波分复用器件即Filter-WDM。
2024/11/14 6:13:51 343KB WDM TFF
1
本MATLAB程序用来对模拟信号数字化并且将数字序列进行数字调制得到适合在无线和光信道中传输的频带信号。
程序中首先对输入的抽样值进行PCM编码,然后将得到的PCM基带序列分别进行ASK,FSK和PSK调制,得到频带信号。
将程序代码编写后,保存为M文件pcm.m,然后在File菜单下的SetPath选项中添加M文件所在的文件夹作为一个新的搜索路径。
例如在MATLAB命令行中输入pcm(435),对435这个样值PCM编码再调制。
2024/11/13 18:40:18 5KB MATLAB PCM ASK FSK
1
如今,移动通信是一种新兴技术。
GSM是全球移动通信系统的缩写。
GSM模块是使用无线电波传输数据的无线调制解调器。
GSM体系结构类似于移动体系结构。
GSM调制解调器通常用于许多电子应用中,并且需要它们与微控制器进行接口。
本代码用于实现GSM调制解调器与AT89C51微控制器的接口。
2024/11/13 10:52:55 3KB GSM 8051 C C++
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2024/11/12 20:26:46 2.14MB 加密算法
1
硬件背景:基于stm32芯片,挂载心率监测传感器通过蓝牙传输数据的心率监测仪本文将介绍下如何根据接收到的数据进行动态绘制心率折线图(大神请绕步,此乃菜鸟分享show)本案例是比较粗糙的动态绘制心率折线图,所以这里拿时间变量来刷新绘制折线图
2024/11/12 16:15:37 2.58MB 折线图、C#
1
4.3:OSPF、传输层、ACL.docx
2024/11/12 3:11:25 121KB linux
1
内含Digital_baseband_array.mDigital_baseband_awgn.mDigital_baseband_ber.mDigital_baseband_eye_pattern.mDigital_baseband_filterR.mDigital_baseband_filterT.mDigital_baseband_judgement.mDigital_baseband_noise.mDigital_baseband_noise_va.mDigital_baseband_sample.mDigital_baseband_send_signal.mshyx.msqrt_shyx.mdtft2.midft.m等子程序或函数
2024/11/11 12:02:02 7KB matlab
1
基础场景:两个用户使用PC终端在线聊天过程中,发起点对点文件传输文件发送方需从本地文件系统选择可传输的数据文件文件接收方有权在一开始选择接收文件或取消;
若选择接收,须指明文件保存位置在文件传输过程中,系统应能提供每个文件当前的传输状态,文件的收发方均能在传输开始后完毕前取消文件的传输若文件传输过程中产生了非人为取消引起的传输失败,应告知收发双方对于中途传输失败或被取消的文件,其再次传递时应能支持断点续传每个文件传输完毕后,给予收发方提示
2024/11/10 16:46:51 1.77MB SIP msrp
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡