K均值以及多种谱聚类的matlab实现,经过k近邻等方法实现
2015/2/18 20:04:36 15.08MB 谱聚类
1
恍惚c均值聚类算法用于图像分割,已调试成功。
2017/11/16 21:38:42 7KB fcm 图像分割
1
电子商务均值堆栈对于服务器:技术:Node.js,express.js,mongodb要运行服务器,请运行npmstartHitlocalhost:3000对于客户:技术:javascript,Angular8要运行客户端,请运行ngserve
2015/7/22 16:02:56 744KB nodejs javascript angular typescript
1
用C#写的PID调试软件,用于模仿、仿真及学习。
可自行调整PID三个参数,然后看到波形显示,初学者学习好工具。
1.需要.netframework,你懂的2.运行后点击Go,PID就会跟踪。
3.修改PID参数后,请重新点击Go!4.开启噪声后,噪声均值为下面设置的那个值,最大值为其2倍。
5.Random就是随机设置目标值6.直接用鼠标拖动右边的bar可以直接更改目标值(可以在Go后更改)7.波形图从最小到最大值是0到100008.PID输出没有限幅其它有待优化~~PID算法参考http://download.csdn.net/detail/lin381825673/7877801仅供测试学习~~
2020/5/12 2:26:32 11KB PID 调试 模拟 仿真
1
自创他人的资源进行集合和整理了一下,高斯滤波分为一维高斯滤波和二维高斯滤波,并且和OPENCV的高斯滤波的时间进行对比了一下,比OPENCV的要慢很多
2015/1/22 5:02:49 78KB 高斯滤波 中值滤波 均值滤波
1
相关向量机的MATLAB代码,经过验证是正确的,很实用推荐相关向量机(Relevancevectormachine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Supportvectormachine,简称SVM)一样的函数方式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。
RVM原理步骤RVM通过最大化后验概率(MAP)求解相关向量的权重。
对于给定的训练样本集{tn,xn},类似于SVM,RVM的模型输出定义为y(x;w)=∑Ni=1wiK(X,Xi)+w0其中wi为权重,K(X,Xi)为核函。
因此对于,tn=y(xn,w)+εn,假设噪声εn服从均值为0,方差为σ2的高斯分布,则p(tn|ω,σ2)=N(y(xi,ωi),σ2),设tn独立同分布,则整个训练样本的似然函数可以表示出来。
对w与σ2的求解如果直接使用最大似然法,结果通常使w中的元素大部分都不是0,从而导致过学习。
在RVM中我们想要避免这个现像,因此我们为w加上先决条件:它们的机率分布是落在0周围的正态分布:p(wi|αi)=N(wi|0,α?1i),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0.RVM的步骤可以归结为下面几步:1.选择适当的核函数,将特征向量映射到高维空间。
虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函数,RBF核函数,Laplace核函数,多项式核函数等。
尤其以高斯核函数应用最为广泛。
可能于高斯和核函数的非线性有关。
选择高斯核函数最重要的是带宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降2.初始化α,σ2。
在RVM中α,σ2是通过迭代求解的,所以需要初始化。
初始化对结果影响不大。
3.迭代求解最优的权重分布。
4.预测新数据。
2021/2/5 11:51:53 17KB 相关向量机 rvm
1
本人系统辨识课程的全部代码以及报告报告里有所有算法原理。
内容如下:第一章 最小二乘法 11.1 问题重述 11.2 最小二乘法 11.2.1 基本最小二乘法 11.2.2 不需矩阵求逆的最小二乘法 21.2.3 递推最小二乘法 41.3 辅助变量法 61.3.1 一次辅助变量法 61.3.2 递推辅助变量法 71.4 广义最小二乘法 91.4.1 一次广义最小二乘法 91.4.2 递推广义最小二乘法 101.5 夏式法 121.5.1 夏式偏差修正法 121.5.2 夏式改良法 131.5.3 递推夏式法 131.6 增广矩阵法 161.7 自编方法-多阶段最小二乘法 181.8 噪声特性分析 191.8.1 时域波形 201.8.2 均值分析 201.8.3 方差分析 211.8.4 自相关函数分析 211.8.5 功率谱密度分析 221.8.6 总结 22第二章 极大似然法 23第三章 方法比较 253.1 问题重述 253.2 各方法精度对比 253.3 各方法计算量对比 253.4 噪声方差的影响 263.5 白噪声和有色噪声对辨识的影响 27第四章 系统模型阶次的辨识 284.1 问题重述 284.2 按残差方差定阶 284.2.1 按估计误差方差最小定阶 284.2.2 F检验法 294.3 按AKAIKE信息原则定阶 294.4 按残差白色定阶 304.5 噪声对定阶的影响 314.6 三种方法的优劣及有效性 31附录 32
1
在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;
2)带抖动视频;
3)静态背景下多摄像头对多目标提取;
4)出现异常事件视频的判断等问题。
给出了在不同情况下的前景目标提取方案。
问题一是针对静态背景且摄像头稳定的情况下,如何对前景目标提取的问题。
在题目要求的基础上,通过对附件2中几组视频的分析,我们发现所有前景目标的运动短暂且光线明暗变化不明显。
由于传统的Vibe算法能抑制鬼影但是运行效果不理想,因此采用建立在帧差法上改进的Vibe算法模型求解问题。
并和传统的Vibe算法做对比,结果显示改进的Vibe算法明显优于传统的算法。
而且对我们的算法模型做了效果评价。
详细数据参考正文与附录。
问题二是在背景为动态(如有水波的产生)的情况下,对前景目标的提取问题。
在此问题中,由于动态背景存在使得提取出的图像帧具有大量的干扰噪声,对前景目标的识别和提取造成干扰,因此我们提出一种基于全局外观一致型的运动目标检测法。
在用Vibe算法对场景预检测的基础上,建立混合高斯模型分别对前景和背景进行全局外观建模,将运动目标检测出来,再引入超像素去噪,进一步优化结果。
详细结果参考正文与附录。
问题三是在问题一、二基础上的进一步深化。
问题一及问题二是建立在摄像机自身稳定的基础上,而问题三则是在摄像机抖动的情况下。
由于摄像机抖动一般具有旋转和平移,因此我们建立了坐标变换模型,以仿射变换作为模型基础,结合改进的高精度鲁棒的RANSAC算法提取前景目标,并对比灰度投影法,比较两种模型效果。
具体效果见正文与附录。
问题四是对前三个问题的综合应用。
运用基于混合高斯模型背景建模Vibe算法,对前景目标进行提取;
选出具有显著前景目标的参考帧,计算参考帧中显著前景目标所占的面积,并将此面积设定为阈值T,遍历所有的视频帧,计算其前景目标所占的面积,通过相减对比,判定显著前景目标。
若判定为显著前景目标则输出其所在视频帧中的帧号,并将显著前景出现的总帧数增加1。
问题五是针对多摄像头多目标的协同跟踪问题。
在问题二的混合高斯模型基础上我们建立了动态背景提取法,对不断变化的背景进行实时更新。
再利用单应性约束法对多目标发生重叠现象进行投影将重叠目标区分开来,对目标进行定位。
由于目标的不断运动,我们采用粒子滤波法对前景目标进行实时跟踪,通过多摄像头的协同通信完成对多前景目标的检测。
问题六是针对监控视频中前景目标出现异常情况时判断能否有异常事件的问题。
在基于稀疏表示的模型上,引入混合高斯模型用于学习不同类型的运动特征规律,然后通过各个单高斯模型中的均值建立一个相似矩阵作为字典。
以测试阶段生成的核矢量为基础,用该局部特征的核矢量计算基于稀疏表示的重构误差,并将其与已设定的阈值进行比较,如果重构误差大于阈值,则判为异常。
2015/11/11 19:17:23 2.62MB MATLAB 目标提取 视频监控 Vibe算法
1
SAR图像变化检测方法,包括了对数比和均值比两种较为经典的仿真。
本方法从图像像素的角度出发,对图像像素的灰度值进行操作。
分别才用了均值法和对数比法,然后。
本代码适合老手使用,能让初学者从图像像素灰度值的角度去理解SAR图像形变监测的理论
2018/5/5 14:23:13 278KB matlab SAR image
1
第1周面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2周赌博设计:概率的基本概念,古典概型第3周每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4周啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)第5周万事皆由分布掌握:多维随机变量及其分布第6周砖家的统计学:随机变量的期望,方差与协方差第7周上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布第8周点数成金,从抽样推测规律之一:点估计与区间估计第9周点数成金,从抽样推测规律之二:参数估计第10周对或错?告别拍脑袋决策:基于正态总体的假设检验第11周扔掉正态分布:秩和检验第12周预测将来的技术:回归分析第13课抓住表象背后那只手:方差分析第14周沿着时间轴前进,预测电子商务业绩:时间序列分析简介
2020/3/20 13:28:41 204B 大数据 统计学
1
共 294 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡