系统辨识与自适应控制是控制理论中的两个关键领域,它们在自动化、机器人技术、航空航天、过程控制等众多IT行业中有着广泛的应用。
本压缩包文件包含的资源可能是一系列关于这两个主题的编程代码实例,旨在帮助学习者理解和实践相关算法。
系统辨识是通过收集系统输入和输出数据来构建数学模型的过程,这些模型可以描述系统的动态行为。
在实际应用中,系统辨识通常涉及时间序列分析、最小二乘法、状态空间模型以及参数估计等技术。
通过对系统进行建模,我们可以预测系统响应、优化性能或诊断故障。
例如,对于一个工业生产线,系统辨识可以帮助我们理解机器的运行特性,以便于提高生产效率或预防设备故障。
自适应控制则是控制理论的一个分支,它允许控制器根据系统的未知或变化特性自动调整其参数。
在自适应控制中,关键概念包括自适应律、参数更新规则和不确定性估计。
自适应控制器的设计通常包括两个部分:一是固定结构的控制器,用于处理已知的系统特性;
二是自适应机制,用于处理未知或变化的部分。
例如,在自动驾驶汽车中,自适应控制系统能够实时调整车辆的行驶策略以应对路面条件的变化或驾驶环境的不确定性。
这个压缩包可能包含以下内容:1.**源代码**:可能包含用各种编程语言(如Python、Matlab、C++等)实现的系统辨识和自适应控制算法,例如最小二乘法估计、卡尔曼滤波器、自适应PID控制器等。
2.**数据集**:可能提供了实验数据或模拟数据,用于测试和验证识别算法和自适应控制器的效果。
3.**教程文档**:可能包括详细的步骤说明,解释如何运行代码、解读结果以及如何将理论知识应用于实际问题。
4.**示例问题**:可能涵盖各种工程问题,如机械臂控制、过程控制系统的稳定性分析等,以帮助学习者深入理解这两个领域的应用。
通过学习和实践这些代码,学习者不仅可以掌握系统辨识和自适应控制的基本理论,还能提升编程和解决实际问题的能力。
在IT行业中,这样的技能对于从事控制系统的开发和优化工作至关重要,无论是物联网(IoT)设备、智能机器人还是复杂的自动化生产线,都需要这样的技术来确保系统的高效、稳定运行。
2024/9/30 8:52:27 1.15MB 系统辨识
1
拍拍贷发起的一次与信贷申请审核工作相关的竞赛数据集,包括信用违约标签(因变量)、建模所需的基础与加工字段(自变量)、相关用户的网络行为原始数据。
本着保护借款人隐私以及拍拍贷知识产权的目的,数据字段已经过脱敏处理。
2024/9/29 18:05:03 13.95MB 拍拍贷建模数 机器学习
1
不同方向成对图像拼接(保持车ID不变),可作一般用途,可作为数据增强数据集,生成不同角度的图像,利用GAN网络
2024/9/29 18:03:24 104.75MB deep learnin dataset
1
手写数字识别,使用神经网络实现,包含实现的源代码和数据集。
2024/9/29 12:21:42 18.89MB 手写数字识别 神经网络 机器学习
1
GPS轨迹数据集,用于深度学习的模型训练,数据集里有GPS轨迹数据和标签。
2024/9/29 12:51:53 216KB GPS 轨迹 数据集
1
Kaggle-House-Prices-Advanced-Regression-Techniques原始数据集,包括train.csv,test.csv,data_description.txt
2024/9/29 3:12:17 166KB Kaggle House Prices 数据集
1
Cuprite(矿区图)是高光谱解混研究的最基准数据集,涵盖美国内华达州拉斯维加斯的Cuprite矿区,原始数据有224个波段,从370nm至2480nm。
在移除有噪声的通道(1--2和221-224)和吸水通道(104-113和148-167)后,仍然有188个通道。
250×190个像素的区域被认为存在14种矿物。
由于类似矿物的变体之间存在细微差别,最终确定为12名成员,总结如下"#1Alunite","#2Andradite","#3Buddingtonite","#4Dumortierite","#5Kaolinite1","#6Kaolinite2","#7Muscovite","#8Montmorillonite","#9Nontronite","#10Pyrope","#11Sphene","#12Chalcedony".
2024/9/27 13:43:54 12.92MB 高光谱解混 Cuprit
1
包含十种物体,每一类100张图片,已经分好测试集和训练集了,小样本量的数据集,挺好用
2024/9/26 4:06:29 13.41MB 十分类数据集
1
社团发现算法实现,包含亚马逊,dolphin,football和polblogs数据集
2024/9/25 11:29:11 4.66MB 社团发现 算法 实现 java
1
Cloudera和英特尔公司的工程师们正在通力合作,旨在使Sparkshuffle阶段具有更高的可扩展性和稳定性。
本文对相关方法的设计进行了详细描述。
区别常见的Embarrassingly Parallel系统,类似MapReduce和Apache Spark(Apache Hadoop的下一代数据处理引擎)这样的计算引擎主要区别在于对“all-to-all” 操作的支持上。
和许多分布式引擎一样,MapReduce和Spark的操作通常针对的是被分片数据集的子分片,很多操作每次只处理单个数据节点,同时这些操作所涉及到的数据往往都只存在于这个数据片内。
all-to-all操作必须将数据集看作一个
2024/9/25 10:14:06 326KB 双倍提升ApacheSpark排序性能
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡