redis和zk两种不同方式实现分布式锁,互联网开发小伙伴必备技能!
2024/9/7 15:30:29 1.46MB 高并发 java 分布式锁
1
以前的分散式认知媒体访问控制(DC-MAC)协议允许次要用户(SU)独立搜索频谱访问机会,而无需中央协调员。
DC-MAC假定检测方案在物理(PHY)层是理想的。
实际上,在分布式频谱共享方案中,更复杂的检测算法是不切实际的。
由于PHY层的能量检测(ED)计算和实现复杂度较低,因此已成为最常用的方法。
因此,至关重要的是在PHY层将DC-MAC与ED集成在一起。
但是,ED需要最低采样时间(MST)持续时间才能在低信噪比(SNR)环境中实现目标检测概率。
否则,将无法达到预期的检测性能。
在本文中,我们推导了在低SNR环境中ED的MST的准确表达。
然后,我们提出了一种基于MST的优化DC-MAC(ODC-MAC)协议,该协议对上述带有ED的DC-MAC问题进行了修正。
此外,对于DC-MAC和ODC-MAC都导出了不可靠的数据传输概率的闭式表达式。
我们表明,仿真结果与理论分析吻合良好。
与传统的DC-MAC相比,所提出的ODC-MAC可以提高数据传输的可靠性并提高吞吐量。
2024/9/7 4:30:45 2.62MB cognitive radio; energy detection;
1
本文接着上期介绍的”简单了解Hbase及快速入手之入门教程_01“,着重介绍了hbase的伪分布式部署以及hbase的过滤器。
适合刚入门或者刚接触的小伙伴参考。
2024/9/6 22:23:23 455KB hbase 大数据
1
这个Matlab工具箱实现32种维数降低技术。
这些技术都可以通过COMPUTE_MAPPING函数或trhoughGUI。
有以下技术可用: -主成分分析('PCA') -线性判别分析('LDA') -多维缩放('MDS') -概率PCA('ProbPCA') -因素分析('因子分析') -Sammon映射('Sammon') -Isomap('Isomap') -LandmarkIsomap('LandmarkIsomap') -局部线性嵌入('LLE') -拉普拉斯特征图('Laplacian') -HessianLLE('HessianLLE') -局部切线空间对准('LTSA') -扩散图('DiffusionMaps') -内核PCA('KernelPCA') -广义判别分析('KernelLDA') -随机邻居嵌入('SNE') -对称随机邻接嵌入('SymSNE') -t分布随机邻居嵌入('tSNE') -邻域保留嵌入('NPE') -线性保持投影('LPP') -随机接近嵌入('SPE') -线性局部切线空间对准('LLTSA') -保形本征映射('CCA',实现为LLE的扩展) -最大方差展开('MVU',实现为LLE的扩展) -地标最大差异展开('地标MVU') -快速最大差异展开('FastMVU') -本地线性协调('LLC') -歧管图表('ManifoldChart') -协调因子分析('CFA') -高斯过程潜变量模型('GPLVM') -使用堆栈RBM预训练的自动编码器('AutoEncoderRBM') -使用进化优化的自动编码器('AutoEncoderEA')此外,工具箱包含6种内在维度估计技术。
这些技术可通过INTRINSIC_DIM函数获得。
有以下技术可用: -基于特征值的估计('EigValue') -最大似然估计器('MLE') -基于相关维度的估计器('CorrDim') -基于最近邻域评估的估计器('NearNb') -基于包装数量('PackingNumbers')的估算器 -基于测地最小生成树('GMST')的估计器除了这些技术,工具箱包含用于预白化数据(函数PREWHITEN),精确和估计样本外扩展(函数OUT_OF_SAMPLE和OUT_OF_SAMPLE_EST)的函数以及生成玩具数据集(函数GENERATE_DATA)的函数。
工具箱的图形用户界面可通过DRGUI功能访问
2024/9/5 12:27:19 1.06MB matlab,降维
1
研究了光频域反射技术(OFDR)中因激光线宽有限而造成的激光相位噪声对系统性能的影响。
理论推导了相位噪声的分布函数,仿真分析和实验测试了激光相位噪声与激光相干长度、反射信号强度之间的内在关联性。
研究结果表明,激光相位噪声是OFDR中的重要噪声来源,影响着系统的测试精度和可测距离,当测试距离接近相干长度、链路中存在强的反射信号时,激光相位噪声的影响将更加严重、影响范围也将增加。
因此,在OFDR的设计和应用中必须对激光相位噪声问题予以高度关注和设计考虑。
2024/9/4 15:34:16 3.99MB 散射 后向散射 光频域反 迈克耳孙
1
静脉识别,生物识别的一种。
静脉识别系统一种方式是通过静脉识别仪取得个人静脉分布图,依据专用比对算法从静脉分布图提取特征值,另一种方式通过红外线CCD摄像头获取手指、手掌、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,实现特征值存储。
静脉比对时,实时采取静脉图,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,采用复杂的匹配算法同存储在主机中静脉特征值比对匹配,从而对个人进行身份鉴定,确认身份。
2024/9/3 5:18:33 405KB 静脉识别 matlab 图像处理
1
java课程设计——记忆测试系统。
记忆测试系统是通过回忆法测试记忆能力,测试手段分为初级、中级、高级三个级别。
记忆测试系统设计要求如下:1、单击“选择级别”菜单可以选择初级、中级或高级。
2、单击“查看排行榜”菜单可以查看初级记忆榜、中级记忆榜或高级记忆榜,通过记忆榜存储每个级别的成绩。
3、选择级别后,将出现相应级别的测试区。
4、m*n个方块组成的测试区中有m个图标,每个图标重复出现n次,并且随机分布在测试区中的m*n个方块上。
5、测试区能显示用户的同时,并根据级别的不同,提示用户必须用鼠标连续单击出多个图标相同的方块。
6、测试区有提示图标所在位置的功能。
7、连续单击出级别所要求的若干个图标相同的方块后,将弹出保存成绩对话框,用户可以通过该对话框选择是否将自己的成绩保存到成绩表中。
8、单击“选择图标”菜单可重新选择方块图标样式,既可以重新选择m个图标。
2024/9/3 5:47:58 5.93MB java课程设计 记忆测试系统
1
配以插图方式介绍NUMECA软件进行分布式和集中式并行运算的方法和步骤
2024/9/3 4:57:10 658KB NUMECA 并行计算
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
分布式电源接入系统典型设计(2016版)
2024/9/2 11:04:26 4.98MB 分布式电源
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡