传统的去噪方法往往假设含噪图像的有用信息处在低频区域,而噪声信息处在高频区域,从而基于中值滤波、Wiener滤波、小波变换等方法实现图像去噪,而实际上这种假设并不总是成立的。
基于图像的稀疏表示,近几年来研讨者们提出了基于过完备字典稀疏表示的图像去噪模型,其基本原理是将图像的稀疏表示作为有用信息,将逼近残差视为噪声。
利用K-SVD算法求得基于稀疏和冗余的训练字典,同时针对K-SVD算法仅适合处理小规模数据的局限,通过定义全局最优来强制图像局部块的稀疏性。
文献[28]提出了稀疏性正则化的图像泊松去噪算法,该算法采用log的泊松似然函数作为保真项,用图像在冗余字典下稀疏性约束作为正则项,从而取得更好的去噪效果。
2022/9/4 0:28:02 2.07MB 稀疏 图像
1
资源包括了四十W条商品品牌和分类的词库,做电商搜索可以间接用
2022/9/3 18:41:43 12.44MB xie
1
超外差调幅接收机计划调幅接收机高频小信号放大器
2022/9/3 3:57:33 524KB 超外差 接收机
1
通信电子线路实验指点书做高频、通信课程设计的同学可以参考一下里面的例子很详细华科出版的
2022/9/2 22:54:44 565KB 通信电子线路
1
在许多应用中都需要增强彩色图像的细节。
锐化蒙版(UM)是用于细节增强的最经典工具。
已经提出了许多通用的UM方法,例如,有理UM技术,三次模糊技术,自适应UM技术等。
对于彩色图像,这些算法分三个步骤:a)实施color2grey步骤;
b)基于亮度分量(LC)设计高频信息(HFI)提取方法;
c)利用HFI完成增强过程。
但是,仅使用LC的HFI可能会丢失色度分量(CC)的HFI。
提出了一种基于四元数的细节增强算法,既利用亮度又利用CC来提取彩色图像的细节。
设计该算法以解决三个任务:1)设计基于3Dvector旋转的四元数描述的彩色高频信息(CHFI)提取方法;
2)执行CHFI和灰色高频信息(GHFI)的有效融合策略;
3)设计了基于四元数的局部动态范围的测量方法,基于该方法可以确定所提出算法的增强系数。
该算法的功能优于其他许多类似的增强算法。
可以调整八个参数以控制清晰度,以产生所需的结果,从而使该算法具有实用价值。
2020/11/11 15:23:08 1.33MB Color texture; image enhancement;
1
1.从左到右扫描一遍输入的数组2.遇到每根柱子的时候,以它的高度作为当前矩形的高度3.矩形的宽度从当前柱子出发不断延伸到左边和右边4.一旦遇到了低
2021/3/18 10:35:04 3.34MB leetcode 数据结构 算法
1
本文采用两种改进的算法:基于HSV的小波融合算法(HSV-WT)、基于区域特征的自适应小波包融合算法(AWP)分别对多光谱LandSatTM数据与全色SPOT-5数据、TM数据与ERS-2的合成孔径雷达SAR数据进行融合.融合结果表明两种改进算法融合后的数据在保持光谱信息和提高空间细节信息两方面均得到提高.当应用两种方法对同一组数据进行处理时,AWP的功能参数优于HSV-WT.这两种算法相对传统小波算法,能克服对高频信息处理的缺陷,突破待融合数据的分辨率比值限制,实现分辨率之比非2n的数据融合.
2019/7/10 3:36:03 1.85MB 改进算法 数据融合 小波算法 HSV
1
1、下图为电容的高频等效模型,R是等效串联电阻,L是等效串联电感,C是等效电容。
请写出该电容在高频形态下的阻抗表达式。
请问该电容的谐振频率fT是多少?在什么频率下该电容呈容性?在什么频率下该电容呈感性?在滤波电路中应如何选择电容的谐振频率?
2015/3/1 12:47:39 392KB 电子硬件工程师 笔试电子考试
1
文档内容为智能信息检索课程期末复习题库,其中题库范围为我们任课老师标注的内容重点,涵盖了多个章节的内容,且为课程重点与高频考点。
文档内容清晰,排版整齐,包含题目与答案,适用于正在学习信息检索导论这门课程的学生,用于掌握重点与查漏补缺,当然,每个老师的重点势必会不一样,所以该内容仅供参考,具体重点还是以自己老师为准。
此外,文中部分习题的解答可能不够详尽,对于初学者来说可能有一定的困难,这部分同学可以移步至我的这篇博客http://t.csdn.cn/Xn4s9进行参考,博客中的解答会有所扩充,并穿插了一些知识点,如果有协助的话希望大家点赞收藏加关注,十分感谢啊。
1
自己编写的,希望对他人有用.小波分解层数为5层,提取高频系数,进行单只重构,从而得到各组系数,最初再用能量熵的算法对其进行计算。
2018/11/13 2:02:40 880B 小波熵 matlab
1
共 262 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡