在电子技术领域,鼠标作为计算机输入设备之一,其工作原理和设计是计算机硬件的重要组成部分。
本文将详细讨论标题“一种用方波驱动鼠标光标移动的鼠标电路的设计”所涉及的知识点,包括鼠标的工作机制、方波在鼠标控制中的作用以及如何通过电路设计实现这一功能。
我们要理解鼠标的最基本工作原理。
传统的鼠标内部通常包含一个光学传感器或机械滚轮,用于检测鼠标在桌面的移动。
当鼠标移动时,这些传感器会将物理运动转化为电信号,然后通过微控制器(MCU)处理这些信号,最后通过USB或蓝牙接口发送到计算机,使屏幕上的光标相应地移动。
方波驱动鼠标光标移动的技术则涉及到更精细的控制。
方波是一种周期性变化的数字信号,具有明确的上升沿和下降沿,常用于时钟信号或脉冲宽度调制(PWM)。
在这个设计中,方波用于控制鼠标光标的移动速度和方向。
通过调整方波的频率、占空比或相位,可以精确地改变光标移动的速度和方向,从而实现更细腻的操作。
具体实现过程中,设计者可能采用以下步骤:1. **信号生成**:利用MCU或者专用的信号发生器生成可调的方波信号。
2. **信号处理**:将方波信号与传感器检测到的鼠标移动信号结合,根据方波的特性来调整光标移动的速率。
3. **脉宽调制**:可能采用PWM技术,通过改变方波的占空比来控制光标的加速度或减速度,从而实现更平滑的移动体验。
4. **接口控制**:通过USB或蓝牙接口,将处理后的信号发送给计算机,使得光标按照预设的轨迹移动。
5. **反馈系统**:可能包含一个反馈回路,监测光标的实际位置,并根据误差进行实时调整,以提高精度。
电路设计中,需要考虑以下关键组件:- **微控制器**:如Arduino或STM32等,负责处理信号并控制整个系统。
- **传感器**:可能是光学传感器或机械滚轮,捕捉鼠标移动。
- **信号调理电路**:用于滤波、放大或整形传感器信号,使其适应MCU的输入要求。
- **方波生成电路**:可能包含振荡器和逻辑门电路,产生可调的方波信号。
- **接口电路**:USB或蓝牙接口电路,用于与计算机通信。
在实际应用中,这样的设计可能适用于专业级游戏鼠标或高精度的图形设计工具,因为它能提供更精确、更灵敏的光标控制。
设计者还需要考虑到电源管理、抗干扰措施以及用户友好的界面设置等方面,以确保整体系统的稳定性和易用性。
用方波驱动鼠标光标移动的鼠标电路设计是一种创新的方法,它通过精细化控制信号,提升了鼠标的操控性能。
这种技术的实现涉及到了微控制器编程、信号处理、接口设计等多个方面的知识,是电子工程和计算机科学的交叉领域。
2025/6/20 1:32:31 140KB
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1

在IT行业中,后端开发是构建应用程序不可或缺的一部分,而Python语言因其简洁明了的语法和丰富的库支持,已经成为后端开发领域中的热门选择。
"backend_python"这个项目可能是一个专门探讨使用Python进行后端开发的资源集合。
让我们深入了解一下Python在后端开发中的应用和相关知识点。
Python作为一门解释型、面向对象的高级编程语言,其特点在于可读性强,易于学习,适合快速开发。
在后端开发中,Python主要通过以下几个方面展现其强大功能:1. **Web框架**:Python拥有许多成熟的Web框架,如Django、Flask、Tornado等。
Django是一个功能齐全的MVC(Model-View-Controller)框架,提供了强大的ORM(对象关系映射)和内置的管理界面,适合大型复杂项目。
Flask则轻量级且灵活,适用于快速开发小型应用。
Tornado则以其异步I/O模型在高并发场景下表现出色。
2. **数据库操作**:Python支持多种数据库,如MySQL、PostgreSQL、SQLite等,通过相应的数据库连接库如pymysql、psycopg2、sqlite3等进行数据交互。
ORM库如SQLAlchemy和Peewee可以进一步简化数据库操作。
3. **API开发**:Python可以方便地创建RESTful API,通过框架如Flask-Restful或Django REST framework,可以快速构建符合HTTP标准的接口,便于前后端分离。
4. **数据处理与分析**:Python的Pandas库为数据分析提供了强大的工具,NumPy和SciPy则在科学计算领域有着广泛的应用。
对于大数据处理,Apache Spark可以通过PySpark接口与Python结合,实现高效的数据处理。
5. **并发与异步**:Python 3.5及以后版本引入了asyncio模块,支持协程和异步编程,使得Python也能处理高并发场景。
6. **部署与运维**:Python的Fabric和Ansible可以用于自动化部署和系统管理,而Gunicorn和uWSGI则是常用的Python WSGI服务器,用于承载Web应用。
7. **微服务架构**:Python在构建微服务方面也十分便捷,利用Flask或Django可以快速构建独立的服务单元。
8. **测试**:Python的unittest、pytest和behave等库提供了全面的测试支持,确保代码质量和稳定性。
9. **安全**:Python的requests库用于安全的HTTP请求,而cryptography和pyOpenSSL库则提供了加密和网络安全相关功能。
10. **持续集成/持续部署(CI/CD)**:Jenkins、GitLab CI/CD、Travis CI等工具都可以与Python项目很好地集成,实现自动化的测试和部署流程。
"backend_python-main"这个文件名可能是项目的主要入口或者源代码目录,包含了项目的主程序、配置、路由、模型等核心部分。
通过对这个目录的深入研究,可以更具体地了解项目如何运用以上知识点进行实际的后端开发。
Python在后端开发中的应用广泛且深入,无论是在小型快速原型还是大型企业级应用中,都能发挥其独特的优势。
2025/6/19 23:26:33 12KB
1

《微型计算机技术》是一门针对理工科学生的专业课程,旨在教授微型计算机系统的基本构造、工作原理及接口技术。
这门课程对于理解计算机科学与技术专业至关重要,因为它涵盖了微处理器、接口设计、应用软件开发等核心内容,为学生将来在微型计算机系统开发和应用领域打下坚实的基础。
教学目标是让学生掌握微型计算机的基本概念、理论和方法,理解其系统特点、工作原理和组织结构。
课程内容主要包括以下几个方面:1. 微型计算机系统的组织结构及工作原理:学生需要了解微处理器芯片、微型计算机及微型计算机系统的构成,掌握它们的基本工作流程。
其中,微处理器是计算机的核心,包括运算器和控制器,用于执行算术和逻辑运算以及操作控制。
寄存器则用于存储数据、中间结果和地址。
2. 微型计算机接口原理及应用技术:接口技术是连接微处理器与外界的关键。
课程会详细讲解定时计数器、并行接口、串行接口、中断控制器、DMA控制器、A/D和D/A转换器接口的工作原理,以及如何设计硬件接口电路和编写相关驱动程序。
3. 微型计算机技术的现状与发展趋势:课程会讨论嵌入式系统、软硬件协同设计、系统芯片(SoC)以及知识产权内核(IP核)等前沿技术,让学生了解行业的最新动态。
此外,微型计算机技术课程与其他核心课程如计算机组成原理、计算机系统结构紧密相关,但各有侧重点。
计算机系统结构主要关注系统的结构设计和性能分析,计算机组成原理则深入探讨基本部件的构成和设计,而微型计算机技术则更注重实际应用和编程方法。
教材推荐包括孙德文的《微型计算机技术》作为主要教材,以及刘乐善等编著的《微型计算机接口技术及其应用》和周明德的《微型计算机原理及应用》作为参考书,这些书籍将帮助学生深入理解微型计算机系统的各个方面。
第一章的介绍中,会涉及微处理器、微型计算机和微型计算机系统的定义,以及它们之间的关系。
还会讲解微处理器的发展历程,如摩尔定律,即芯片技术每隔18-24个月会有一次显著提升。
通过学习,学生需要掌握微型计算机系统各组件的功能,理解总线结构的重要性,以及如何利用总线结构将不同部分连接起来构建完整的系统。
《微型计算机技术》的学习不仅包含了硬件层面的知识,还涉及到软件设计和系统集成,是一门理论与实践相结合的重要课程。
通过深入学习,学生将能够具备分析和设计微型计算机系统的能力,为未来的职业生涯做好准备。
2025/6/19 23:26:03 4.49MB
1

数组在2021年3月5日至6日的预科课程中,在位于Londrina校园内的软件开发和计算专业领域的问题解决方案得到了进一步的发展。
组织项目: br.puc.ed.arrays:Demonstraçãode uso de arrays bruc.ed. game:类para registe de registros de um paelel depontuaçãoem ordem decrescente de um jogo utilizando um array。
br.puc.ed.ex3:Pacote para Implementarversãodo painel do patote br.puc.ed.game sem manter a lista ordenada(exercício3)。
锻炼: 在游戏开发板中实现佩内尔·蓬图卡奥的独家代理权。
Em br.pu
2025/6/19 23:25:29 5KB
1

LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),专为解决传统RNN在处理长期依赖问题上的不足而设计。
在序列数据的建模和预测任务中,如自然语言处理、语音识别、时间序列分析等领域,LSTM表现出色。
本项目“LSTM-master.zip”提供的代码是基于TensorFlow实现的LSTM模型,涵盖了多种应用场景,包括多步预测和单变量或多变量预测。
我们来深入理解LSTM的基本结构。
LSTM单元由输入门、遗忘门和输出门组成,以及一个称为细胞状态的特殊单元,用于存储长期信息。
通过这些门控机制,LSTM能够有效地选择性地记住或忘记信息,从而在处理长序列时避免梯度消失或梯度爆炸问题。
在多步预测中,LSTM通常用于对未来多个时间步的值进行连续预测。
例如,在天气预报或者股票价格预测中,模型不仅需要根据当前信息预测下一个时间点的结果,还需要进一步预测接下来的多个时间点。
这个项目中的“多步的迭代按照步长预测的LSTM”可能涉及使用递归或堆叠的LSTM层来逐步生成未来多个时间点的预测值。
另一方面,单变量预测是指仅基于单一特征进行预测,而多变量预测则涉及到多个特征。
在“多变量和单变量预测的LSTM”中,可能包含了对不同输入维度的处理方式,例如如何将多维输入数据编码到LSTM的输入向量中,以及如何利用这些信息进行联合预测。
在多变量预测中,LSTM可以捕获不同特征之间的复杂交互关系,提高预测的准确性。
TensorFlow是一个强大的开源库,广泛应用于深度学习模型的构建和训练。
在这个项目中,使用TensorFlow可以方便地定义LSTM模型的计算图,执行反向传播优化,以及实现模型的保存和加载等功能。
此外,TensorFlow还提供了丰富的工具和API,如数据预处理、模型评估等,有助于整个预测系统的开发和调试。
在探索此项目时,你可以学习到以下关键点:1. LSTM单元的工作原理和实现细节。
2. 如何使用TensorFlow构建和训练LSTM模型。
3. 处理序列数据的技巧,如时间序列切片、数据标准化等。
4. 多步预测的策略,如滑动窗口方法。
5. 单变量与多变量预测模型的差异及其应用。
6. 模型评估指标,如均方误差(MSE)、平均绝对误差(MAE)等。
通过深入研究这个项目,你不仅可以掌握LSTM模型的使用,还能提升在实际问题中应用深度学习解决序列预测问题的能力。
同时,对于希望进一步提升技能的开发者,还可以尝试改进模型,比如引入注意力机制、优化超参数、或者结合其他序列模型(如GRU)进行比较研究。
2025/6/19 19:17:59 5.42MB
1

【大功率近红外半导体激光对蝗蝻致死作用的研究】这篇研究主要探讨了大功率近红外半导体激光对蝗蝻(Oedaleus asiaticus B.Bienko Nymphae)的致死效应,旨在寻找一种环保且高效的蝗虫防控方法,以替代传统的化学药剂。
研究中使用的激光器具有2W的功率和808nm的波长,这种类型的激光属于近红外范围,其热效应可能会对生物组织产生显著影响。
研究者针对三龄及以前龄期和三龄期后的亚洲小车蝗蝻进行了分组实验。
实验中,激光束直接照射蝗蝻的头部,以不同的功率密度和照射时间进行测试,并在照射后立即、5小时后以及次日观察蝗蝻的存活状态。
通过对比实验组和对照组,发现激光照射的蝗蝻在照射部位出现热损伤,活动能力显著下降。
随着激光剂量的增加和照射时间的延长,蝗蝻的活动能力进一步降低,死亡率逐渐升高。
研究结果显示,近红外激光对蝗蝻头部的照射具有良好的致死效果,且年龄较小的蝗蝻对激光的敏感度更高,致死效果更佳。
这是因为较年轻的蝗蝻身体结构相对脆弱,对热能的耐受性较低。
这一发现对于早期防治蝗灾具有重要意义,可以在蝗虫发育初期就有效控制其数量,防止其进一步扩散和造成更大的农作物损失。
激光作为一种非接触式杀虫手段,具有精准、快速和环境污染小的优点。
然而,该研究并未深入探讨激光对其他生物的影响,以及在实际操作中的可行性、成本效益和技术难题。
未来的研究可能需要考虑这些问题,同时,还需要进一步优化激光参数,以达到最佳的杀虫效果,同时避免对生态环境的潜在影响。
此外,该研究得到了高校博士点基金的支持,表明了学术界对这一领域的重视。
作者姚明印和周强分别是博士研究生和教授,他们的研究方向包括光机电生物诱导技术,这为理解激光在生物防治中的应用提供了专业背景。
这项研究为利用大功率近红外半导体激光控制蝗虫提供了理论基础,但实际应用仍需结合生物学、环境科学和技术工程等多方面的考量。
通过深入研究和优化,激光技术有望成为一种有效的生物控制策略,为全球的蝗虫防治提供新的解决方案。
2025/6/19 18:22:09 99KB
1

物联网技术引起了全世界的广泛关注,终端数量持续上升,逐渐成为上百亿个终端市场,其丰富的应用和大量节点数给网络运营带来了技术上的挑战。
而已IPV6为核心的下一代通信网络体系结构所带来的巨大的地址空间和端到端通信特征则为物联网的发展创造了良好的基础网络通信条件。
面来深入理解物联网IPV6技术的进展:1. **IPv6解决物联网寻址问题**:随着物联网设备的爆发式增长,传统的IPv4地址已经无法满足海量设备的地址需求。
IPv6提供了几乎无限的地址空间(3.4x10^38),这为每个物联网设备分配唯一IP地址提供了可能,解决了大规模网络节点的寻址难题。
2. **IPv6的自动配置和移动管理**:IPv6具有内置的地址自动配置功能(如SLAAC、NDP),使得物联网设备可以无需人工干预就能接入网络。
此外,IPv6的移动管理机制,如移动IPv6(MIPv6),能更好地支持物联网设备的移动性和漫游,适应各种应用场景。
3. **服务质量(QoS)支持**:IPv6通过流标签功能实现了服务质量的精细化控制,这对于物联网中如实时监控、远程医疗等对延迟和带宽敏感的应用至关重要。
QoS机制可以根据应用需求动态调整服务等级,确保关键数据的优先传输。
4. **网络安全保障**:IPv6将IPSec协议内置于协议栈,提供端到端的安全保障,满足物联网设备之间的安全通信需求,保护数据隐私和设备安全。
这对于物联网中广泛存在的敏感数据传输尤其重要。
5. **IPv6在低功耗有损网络的适应性**:针对低功耗和有损网络环境,如6LoWPAN,IPv6进行了相应的优化和适配。
6LoWPAN工作组设计了适配层和报头压缩技术,允许IPv6数据包在IEEE 802.15.4这样的限制性网络中高效传输。
此外,还制定了RPL路由协议以满足低功耗网络的路由需求,支持各种数据流量模型。
6. **轻量级应用层协议**:CoRE工作组为资源受限的物联网环境开发了CoAP协议,它是RESTful架构的一个轻量级实现,与HTTP协议相比,更适合在有限资源的设备间进行交互。
CoAP协议可以独立使用,或者通过网关与HTTP协议进行互操作,实现物联网设备与互联网的无缝连接。
7. **物联网网络演进的挑战**:在向IPv6演进过程中,需要考虑物联网设备的升级、网络架构的调整以及不同协议间的互通问题。
这涉及到感知层、网络层和应用层的全面改造,包括6LoWPAN节点、IPv6端点以及中间设备的升级。
物联网IPV6技术的进展在于解决大规模设备的地址需求、提供高效安全的网络服务、适应低功耗环境,并通过轻量级应用层协议提升物联网设备的互操作性。
随着技术的不断成熟,IPv6将成为物联网发展的核心支撑,推动智能城市的建设、工业自动化、智能家居等领域的创新。
2025/6/19 16:47:15 15KB
1

【百度地图Demo详解】在IT行业中,地图API的使用已经成为许多应用不可或缺的一部分,尤其是在移动开发领域。
百度地图作为国内主流的地图服务提供商之一,为开发者提供了丰富的API和SDK,便于他们在项目中集成地图功能。
本篇将详细介绍“百度地图Demo”,以及如何通过它来理解和运用百度地图API。
我们要理解什么是“Demo”。
在编程和软件开发中,Demo通常是指一个简化的示例程序,它展示了特定功能或技术的实际应用。
百度地图Demo就是一个包含了基础和进阶功能的实例,帮助开发者快速上手并理解如何在自己的应用中集成百度地图服务。
1. **注册与获取API密钥** 在使用百度地图API之前,我们需要在百度地图开放平台注册一个账号,并创建应用以获取API密钥。
这个密钥是我们在集成地图服务时必须提供的,用于识别调用来源,确保服务的安全性和可控性。
2. **基本地图展示** 百度地图Demo中的基础功能包括加载地图、设置缩放级别、平移和旋转地图。
这可以通过JavaScript API实现,通过创建地图实例、指定容器元素和设置地图中心点坐标来完成。
3. **标注与覆盖物** 在地图上添加标注可以指示特定地点,例如商店、学校等。
百度地图API提供了多种类型的覆盖物,包括点标记、信息窗口、多边形、圆等。
开发者可以根据需求自定义样式和交互行为。
4. **地理编码与反地理编码** 地理编码是将地址转换为坐标的过程,反地理编码则是将坐标转换为地址。
这两个功能在地图应用中非常实用,例如搜索附近的地点或者根据用户点击的位置显示相关信息。
5. **路线规划** 百度地图提供了丰富的路径规划API,包括驾车、公交、步行等多种方式。
开发者可以定制起点和终点,API会返回详细的路线信息,包括距离、预计时间、步骤等。
6. **实时交通信息** 结合百度地图的交通数据,开发者可以展示实时路况,帮助用户避开拥堵区域,提升出行效率。
7. **地图事件监听** 通过监听地图的点击、拖动等事件,开发者可以实现更丰富的交互功能,比如在用户点击地图时弹出信息窗口,或者在拖动地图时更新定位点。
8. **离线地图** 虽然“student20120923.bak”和“stumanager”两个文件名看起来不像是直接关联百度地图Demo的文件,但它们可能代表了对离线地图数据的备份或管理。
离线地图是针对网络环境不稳定或节省流量场景的一种解决方案,开发者可以通过百度地图SDK实现离线地图的下载、存储和使用。
9. **地图样式自定义** 百度地图允许开发者自定义地图样式,包括更改颜色、隐藏特定图层、设置透明度等,以适应不同应用场景的需求。
10. **集成定位服务** 百度地图API提供了定位服务,可以获取设备的当前位置,同时支持室内定位和高精度定位。
开发者可以结合这些功能实现导航、签到等应用。
“百度地图Demo”是一个全面的教程,涵盖了地图集成的各个方面。
通过学习和实践,开发者不仅可以了解百度地图API的基本用法,还能掌握如何在实际项目中灵活运用,为用户提供更加便捷和丰富的地图体验。
2025/6/19 16:46:25 19.3MB
1

【电子科技大学计算机组成原理实验代码 Mips_CPU代码】在计算机科学领域,计算机组成原理是理解计算机硬件基础的重要课程。
这个实验代码集是针对MIPS(Microprocessor without Interlocked Pipeline Stages)架构的一个CPU实现,使用了硬件描述语言Verilog进行编写。
MIPS是一种精简指令集计算机(RISC)架构,广泛应用于教学、研究以及一些嵌入式系统。
1. **MIPS架构**:MIPS架构以其简单的指令集和流水线设计著称,包括取指、解码、执行、访存和写回五个阶段。
它具有高吞吐量和低延迟的特点,适合高性能计算和嵌入式应用。
2. **Verilog**:Verilog是一种硬件描述语言,用于设计和验证数字系统的逻辑功能。
在这个实验中,Verilog被用来描述MIPS CPU的各个部件,如寄存器、ALU(算术逻辑单元)、控制单元等,并实现指令集架构。
3. **CPU组成**:Mips_cpu文件夹可能包含了CPU的主模块,包括: - **寄存器文件**:存储数据和指令的临时位置。
- **ALU**:执行算术和逻辑运算。
- **控制单元**:根据指令解码结果生成控制信号,指导整个CPU的操作。
- **内存接口**:与外部存储器交互,读取或写入数据。
- **指令解码器**:解析指令并生成相应的操作。
4. **Cpu_and_io**:这部分可能包含了CPU与输入/输出设备的交互逻辑,比如中断处理、设备驱动等。
在实际系统中,CPU不仅要处理内部指令流,还需要响应外部事件,如用户输入、定时器中断等。
5. **Module**:这个文件夹可能包含CPU设计中的各个独立模块,每个模块都有特定的功能,如加法器、比较器、寄存器堆等。
这些模块可以复用,提高代码的可读性和可维护性。
6. **实验过程**:实验描述中提到“保证编译直接可用”,意味着代码已经经过了编译和仿真验证。
这通常涉及到使用像ModelSim这样的仿真工具,确保代码在逻辑上是正确的。
同时,“仿真跟下载FPGA开发板都做了”意味着代码不仅能在软件层面模拟运行,还能在硬件平台上实现,如Xilinx或Altera的FPGA开发板,验证其实物性能。
7. **附加题**:实验可能还包括了一些额外的挑战,如扩展指令集、优化性能等。
这有助于深入理解计算机组成原理,并提升设计能力。
这个实验项目提供了实践MIPS CPU设计的宝贵机会,通过动手编程和硬件验证,学习者可以更深入地理解计算机硬件的工作原理,为后续的系统级设计和硬件开发打下坚实的基础。
2025/6/19 13:19:12 2.77MB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡