包括随机趋势外推模型、时间序列模型,神经网络模型等
2016/8/27 20:32:12 32.05MB 经济预测 MATLAB PPT
1
ARMA、ARIMA、AR、MA均是时间序列的重要方法。
此例程中包含了以上一切的实现过程,java实现的,且含有main函数供自行调试,已亲测可用!
2022/9/6 18:11:54 8.83MB ARMA ARIMA 模型 java实现
1
支持向量机是数据挖掘中的一个新方法。
支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。
目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。
希望《数据挖掘中的新方法——支持向量机》能促进它在我国的普及与提高。
《数据挖掘中的新方法——支持向量机》对象既包括关心理论的研究工作者,也包括关心应用的实际工作者。
对于有关领域的具有高等数学知识的实际工作者,略去书中的某些理论部分,仍能对支持向量机的本质有一个概括的理解,从而用它解决自己的问题。
《数据挖掘中的新方法——支持向量机》适合高等院校高年级学生、研究生、教师和相关科研人员及相关领域的实际工作者使用。
序言符号表第1章最优化问题及其基本理论1·1最优化问题1·2最优性条件1·3对偶理论1·4注记参考文献第2章求解分类问题和回归问题的直观途径2·1分类问题的提出2·2线性分类学习机2·3支持向量分类机2·4线性回归学习机2·5支持向量回归机2·6注记参考文献第3章核3·1描述相似性的工具——内积3·2多项式空间和多项式核3·3Mercer核3·4正定核3·5核的构造3·6注记参考文献第4章推广能力的理论估计4·1损失函数和期望风险4·2求解分类问题的一种途径和一个算法模型4·3VC维4·4学习算法在概率意义下的近似正确性4·5一致性概念和关键定理4·6结构风险最小化4·7基于间隔的推广估计4·8注记参考文献第5章分类问题5·1最大间隔原则5·2线性可分支持向量分类机5·3线性支持向量分类机5·4支持向量分类机5·5ν-支持向量分类机(ν-SVC)5·6ν-支持向量分类机(ν-SVC)和C-支持向量分类机(C-SVC)的关系5·7多类分类问题5·8一个例子5·9注记参考文献第6章回归估计6·1回归问题6·2ε-支持向量回归机6·3ν-支持向量回归机6·4ε-支持向量回归机(ε-SVR)与ν-支持向量回归机(ν-SVR)的关系6·5其他方式的支持向量回归机6·6其他方式的损失函数6·7一些例子6·8注记参考文献第7章算法7·1无约束问题解法7·2内点算法7·3求解大型问题的算法7·4注记参考文献第8章应用8·1模型选择问题8·2分类问题的线性分划中的特征选择8·3模型选择8·4静态图像中球的识别8·5自由曲面的重建问题8·6应用简介8·7核技巧的应用8·8注记参考文献附录A基础知识A·1基本定义A·2梯度和Hesse矩阵A·3方向导数A·4Taylor展开式A·5分离定理附录BHilbert空间B·1向量空间B·2内积空间B·3Hilbert空间B·4算子、特征值和特征向量附录C概率C·1概率空间C·2随机变量及其分布C·3随机变量的数字特征C·4大数定律附录D鸢尾属植物数据集英汉术语对照表
2022/9/5 18:46:11 7.74MB 数据挖掘、支持向量机.pdf
1
异常异常检测标记工具,专门用于多个时间序列(每个类别一个时间序列)。
Taganomaly是用于为异常检测模型创建标记数据的工具。
它允许贴标机选择一个时间序列上的点,通过查看同一时间范围内其他时间序列的行为,或通过查看创建该时间序列的原始数据(假设时间序列是一个汇总指标,每个时间范围内的事件计数):red_exclamation_mark:留意:此工具是作为与的一部分而构建的,并不定期维护。
单击此处使用在Azure上进行部署:目录使用应用程式该应用程序有四个主窗口:标签窗口时间序列标签选定点表视图查看窗口的原始数据(如果存在)将此类别与其他类别进行比较使用TwitterAnomalyDetecti
2022/9/5 16:44:25 1.14MB r time-series shiny anomaly-detection
1
R/S分析法也称重标极差分析法,同时引入了一个统计量Hurst指数。
Hurst指数常用于分析时间序列的分形特征和长期记忆过程,目前在时间序列变化趋势的持续性或反持续性强度判断方面得到广泛援用。
2022/9/4 10:33:54 7KB matla
1
运用c#编写的,时间序列预测程序,算法是BP、RNN神经网络
2022/9/4 7:01:48 133KB C# 神经网络 时间序列预测
1
AR模型用matlab完成进行寿命预测
2022/9/3 11:07:39 2KB AR matlab
1
针对氧化铝配料过程中前往物料成分波动大且难以在线检测的问题,首先,利用滞后的离线分析获得的多变量时间序列,直接构造包含充分预测信息的初始相空间;然后,构建时间序列决策表,并采用一种IGA算法对冗余嵌入和冗余变量进行Rs约简,获取广义重构相空间;最后,根据广义重构结果构造输入样本集,建立LS_SVM实时预测模型.仿真结果表明,提出的模型具有较好的泛化能力,能获得较理想的返料成分含量预测精度(6种氧化物的相对均方根误差均小于13%),具有一定的应用价值.
2022/9/3 6:59:10 889KB 氧化铝 ; 配料过程 ;
1
MATLAB金融建模材料合集金融时间序列分析
2017/7/25 22:20:22 12.62MB MATLAB 金融
1
MATLAB金融建模材料合集金融时间序列分析
2015/6/4 16:57:36 12.62MB MATLAB 金融
1
共 260 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡