第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
superobject1.25------------------SuperObject提供了两个类库文件SuperObject.pas,superxmlparser.pas,其中SuperObject.pas就是用于操作json数据,而superxmlparser.pas用与从XML数据中解析出json数据。
2023/8/2 5:47:48 35KB superobject json XML
1
db-4.7.25.tar.gzfreetype-2.3.5.tar.gzft254.zipgd-2.0.35.tar.gzgettext-0.16.1.tar.gzhttpd-2.4.10.tar.gzjpegsrc.v6b.tar.gzlibpng-1.6.15.tar.gzlibxml2-2.6.32.tar.gzopenldap-2.4.38.tgzphp-5.2.9.tar.gzphpldapadmin-0.9.8.5.tar.gzzlib-1.2.8.tar包含上述安装包,都是源码包,通过编译安装,在CentOs5.0下运行通过
2023/7/31 18:43:03 57.68MB openldap
1
慕客网课程《Android实现抽奖转盘源码》的源码,编译器为AS,module基本参数如下:compileSdkVersion25;
buildToolsVersion"25.0.2";
minSdkVersion21;
targetSdkVersion25
2023/7/31 11:58:23 5.8MB SurfaceView
1
各种gps应用程序1、data_log.c数据采集程序2、rinexout.cRINEX数据格式写入子程序3、to_rinex.c数据格式转换4、sav_pos.c卫星位置计算程序5、sky_sav.c卫星天空显示程序6、dop_calc.c卫星星座DOP计算程序7、view_sav.c历书预报卫星出现程序8、absl_pos.c单点绝对定位程序9、ssgsoft.c--相对静态定位主程序10、controlf.c?读取输入文件子程序11、orbit.c--选择参考卫星子程序12、broad.c--读广播星历计算子程序13、igs.c--读IGS精密星历子程序14、singlep.c--近似位置计算子程序15、rinex.c--读Rinex数据、探测跳周、组成单差子程序16、eqdd_s.c--组成双差方程子程序17、normdd_s.c?组成法方差子程序18、ad_core.c--平差子程序19、ambifix.c--模糊度固定子程序20、tranf.c--坐标变换子程序21、dgps_ppr.相位平滑伪距改正数计算程序22、dgps_phr准载波相位改正数计算程序23rtcmencd.cRTCM电文编码程序24rtcmencd.cRTCM电文译码程序25、net_dgn.c测量格网设计程序26sur_ctr.c动态测量控制程序27、replay.c动态测量数据回放程序28、kin_tran.c动态定位坐标转换程序29、rms.c定位精度估计程序30、tide.c潮位改正程序31、xybl_54.c54坐标变换程序32、xyxy_loc.c任意坐标系转换程序33、gga+gsv.cGGA和GSV数据模拟程序34、depth.c水深数据模拟程序
2023/7/28 2:10:44 12MB gps程序、算法
1
有简约的有时尚各种类型方便大家参考、模仿。
1
thishelp-rememberwordswebprogramcancreateanexampleofhelp-rememberwordsanswerfirstechohorribleifalsocanbeyondnowhighsatisflyenvironmentcommunication
2023/7/24 8:38:38 31KB 小程序
1
破解java加密的rt.jar,在classloader植入破解代码,默认输出到c:/TEMP/classes/目录。
使用方法:只要下载本rt.jar,然后替换掉jdk1.8.0_25\jre\lib目录下的rt.jar。
然后运行你需要破解的java程序即可,如果你的java程序用了自带的jre,那么替换掉该jre下的rt.java
2023/7/22 21:52:17 59.88MB 破解java
1
UltraEdit是不熟悉linux编程界面的福音,目前亲测支持25.20版本,25.10版本,25.00版本,漏网之鱼24.20.0.35,用不了,嘻嘻
2023/7/21 17:32:06 3.49MB UltraEdit
1
目录第1章控制系统案例的MATLAB实现1.1MATLAB/Simulink在时域分析中的应用1.2MATLAB在积分中的应用1.3MATLAB在微分方程中的应用1.4MATLAB/Simulink在根轨迹分析中的应用1.5MATLAB在频域响应中的应用1.6MATLAB/Simulink在状态空间中的应用1.7MATLAB在PID控制器设计中的应用1.8MATLAB在导弹系统中的应用第2章通信系统建模与仿真2.1数字信号的传输2.1.1数字信号的基带传输2.1.2数字信号的载波传输2.2扩频系统的仿真2.2.1伪随机码产生2.2.2序列扩频系统第3章通信系统接收机设计3.1利用直接序列扩频技术设计发射机3.2利用IS95前向链路技术设计接收机3.3利用OFDM技术设计接收机3.4通信系统的MATLAB实现第4章调制与解调信号的MATLAB实现4.1调制与解调简述4.2模拟调制与解调4.2.1模拟线性调制4.2.2双边带调幅调制4.2.3单边带调幅调制4.2.4模拟角度调制4.2.5脉冲编码调制第5章神经网络的预测控制5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法5.4预测控制5.4.1基于CARIMA模型的JGPC5.4.2基于CARMA模型的JGPC第6章控制系统校正方法的MATALB实现6.1PID校正6.1.1PID调节简介6.1.2PID调节规律介绍6.1.3PID调节分析介绍6.2控制系统的根轨迹校正6.2.1根轨迹的超前校正6.2.2根轨迹的滞后校正6.2.3根轨迹的滞后超前校正6.3控制系统的频率校正6.3.1频率法的超前校正6.3.2频率法的滞后校正第7章通信系统的模型分析7.1滤波器的模型分析7.1.1滤波器的类型、参数指标分析7.1.2滤波器相关函数及模拟7.1.3滤波器的相关实现7.2通信系统的基本模型分析7.2.1模拟通信系统的基本模型分析7.2.2数字通信系统的基本模型分析7.3模拟通信系统的建模与仿真分析7.3.1调幅广播系统的仿真分析7.3.2调频立体声广播的信号结构7.3.3彩色电视信号的构成和频谱仿真分析第8章挠性结构振动控制的应用8.1挠性结构的概述8.2挠性结构的主动振动及仿真8.2.1前滤波8.2.2后滤波8.2.3仿真第9章基于小波的信号突变点检测算法研究9.1信号的突变性与小波变换9.2信号的突变点检测原理9.3实验结果与分析9.3.1Daubechies5小波用于检测含有突变点的信号9.3.2Daubechies6小波用于检测突变点第10章小波变换在信号特征检测中的算法研究10.1小波信号特征检测的理论分析10.2实验结果与分析10.2.1突变性检测10.2.2自相似性检测10.2.3趋势检测第11章小波变换图像测试分析11.1概述11.2实例说明11.3输出结果与分析11.4源程序11.4.1nstdhaardemo.m11.4.2thresholdtestdemo.m11.4.3modetest.m11.4.4nstdhaardec2.m11.4.5nstdhaarrec2.m11.4.6mydwt2.m11.4.7myidwt2.m第12章基于小波分析的图像多尺度边缘检测算法研究12.1多尺度边缘检测12.2快速多尺度边缘检测算法12.3实验结果与分析第13章基于小波的信号阈值去噪算法研究13.1阈值去噪方法13.2阈值风险13.3实验结果与分析第14章基于MATLAB的小波快速算法设计14.1小波快速算法设计原理与步骤14.2小波分解算法14.3对称小波分解算法14.4小波重构算法14.5对称小波重构算法14.6MATLAB程序设计实现第15章小波变换检测故障信号与小波类型的选择15.1故障信号检测的理论分析15.2实验结果与分析15.2.1利用小波分析检测传感器故障15.2.2小波类型的选择对于检测突变信号的影响15.3小波类型选择第16章基于小波图像压缩技术的算法研究16.1图像的小波分解算法16.2小波变换系数分析16.3实验结果
2023/7/20 4:49:41 3.89MB MATLAB 智能计算
1
共 454 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡