物联网作为战略性新兴产业的重要组成部分,已成为当前世界新一轮经济和科技发展的战略制高点之一。
物联网通信技术有很多种,从传输距离上区分,可以分为两类:一类是短距离通信技术,代表技术有Zigbee、Wi-Fi、Bluetooth、Z-wave等;
一类是广域网通信技术,业界一般定义为LPWAN(Low-PowerWide-AreaNetwork,低功耗广域网),典型的应用场景如智能抄表。
LPWAN技术又可分为两类:一类是工作在非授权频段的技术,如Lora、Sigfox等,这类技术大多是非标准化、自定义实现;
一类是工作在授权频段的技术,如GSM、CDMA、WCDMA等较成熟的2G/3G蜂窝通信技术,以
1
学校软件工程的一个课程设计,通过struts2、hibernate、spring实现,其中设计struts标签库和spring、hibernate的annotation。
实现个功能比较简单易懂。
资源为“以物换物”平台,有登录、注册、发起物品、回复、提出交换等功能。
还有文件上传的额外技术。
(文件中包含数据库的sql文件)
2025/10/22 10:49:21 19.3MB ssh框架 论坛 商城
1
自己做的尚硅谷周阳老师ActiveMQ课程脑图,其中自己所用做案例的环境搭建都是基于docker与老师课程不一样。
脑图内容涵盖视频的99%的笔记,含有自己编写的代码文件,外加了自己对一些问题的测试与回答。
消息中间件之ActiveMQ消息中间件已经成为互联网企业应用系统内部通信的核心手段,是目前企业内主流标配技术,它具有解耦、异步、削峰、签收、事务、流量控制、最终一致性等一系列高性能架构所需功能。
当前使用较多的消息中间件有RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMQ等,本次以Apache的ActiveMQ作为切入点,分为基础/实战/面试上中下三大部分,将带着同学们从零基础入门到熟练掌握ActiveMQ,能够结合Spring/SpringBoot进行实际开发配置并能够进行MQ多节点集群的部署,最后学习MQ的高级特性和高频面试题的分析。
希望通过本次的学习,能够帮助同学们取得更大的进步,加油O(∩_∩)O
2025/10/22 9:15:46 22.71MB activemq
1
广数980td系列2级密码及相关操作,内有限时停机等操作的详细说明
2025/10/22 7:35:46 124KB 数控 2级密码
1
基于android平台下,虹软sdk人脸识别,人脸检测,年龄检测等功能demo集成。
2025/10/22 5:12:36 39.22MB ren
1
1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。
2.初步了解数字信号处理在是集中的使用方法和重要性。
3.掌握matlab的开发环境
2025/10/22 5:50:14 391KB matlab 电话识别
1
《图论与网络最优化算法》是计算机科学与工程领域中的一门重要课程,主要研究如何在图结构中寻找最优解。
龚劬教授的这本教材深入浅出地讲解了图论的基本概念、网络最优化算法及其应用。
课后习题和参考答案是学习过程中的重要辅助资料,能够帮助学生巩固理论知识,提升实践能力。
我们要理解什么是图论。
图论是数学的一个分支,研究点(顶点)和点之间的连接(边)组成的结构——图。
在计算机科学中,图常被用来建模各种复杂问题,如网络连接、交通路线、社交关系等。
图的性质包括连通性、树形结构、环、路径、欧拉路径、哈密顿回路等。
网络最优化算法则是图论在实际问题中的应用,比如最小生成树问题(Prim或Kruskal算法)、最短路径问题(Dijkstra或Floyd-Warshall算法)、最大流问题(Ford-Fulkerson或Edmonds-Karp算法)。
这些算法的目标是在满足特定约束条件下找到最优解,如最小化成本、最大化流量等。
课后的习题涵盖了图论的基础概念和网络最优化算法的各个方面。
例如,可能会要求学生构造特定类型的图,分析其性质,或者设计算法解决实际问题。
参考答案提供了正确的解题思路和步骤,有助于学生检查自己的理解和解题技巧。
在"平时作业答案"这个文件中,可能会包含对这些问题的详细解答,包括图的表示方法(邻接矩阵、邻接表等),解题过程中的逻辑推理,以及算法的具体实现。
通过对比参考答案,学生可以发现自己的不足,进一步提高解决问题的能力。
学习《图论与网络最优化算法》不仅可以提升理论素养,还能培养解决实际问题的能力。
在教育和考试场景中,这部分知识是许多计算机专业考试和竞赛的重要部分,如ACM/ICPC编程竞赛、研究生入学考试等。
掌握好这些内容,对于从事计算机网络、数据结构、算法设计等相关工作大有裨益。
《图论与网络最优化算法》不仅是一门理论课程,更是一门实践性强、应用广泛的学科。
通过深入学习和练习,学生能够掌握解决复杂问题的工具,为未来的职业生涯打下坚实基础。
2025/10/21 20:57:57 172.4MB 网络 网络
1
通止规是量具的一种,在实际生产中大批量的产品若采取用计量量具(如游标卡尺,千分表等有刻度的量具)逐个测量很费事.我们知道合格的产品是有一个度量范围的.在这个范围内的都合格,所以人们便采取通规和止规来测量.通止规是两个量具分为通规和止规.举个例子:M6-7h的螺纹通止规一头为通规(T)如果能顺利旋进被测螺纹孔则为合格,反之不合格需返工(也就是孔小了).然后用止规(Z)如果能顺利旋进被测螺纹孔2.5圈或以上则为不合格反之合格.且此时不合格的螺纹孔应报废,不能进行返工了.其中2.5卷为国家标准,若是出口件最多只能进1.5圈(国际标准).总之通规过止规不过为合格,通规止规都不过或通规止规都过则为不合格。
  例如检验孔的大小,按孔径允许偏差的上限做止端,按孔径允许偏差的下限做通端,检验时,若止端能通过,说明孔径大了,不合格,且不能重加工;
若通端不能通过,则说明孔径小了,也是不合格,但是可以通过重加工使之合格。
2025/10/21 17:41:05 714KB 机械检具设计
1
在IT行业中,实时传输协议(RTP)是用于在不可靠网络上实时传输音视频数据的标准。
`jrtplib`是一个用C++编写的开源库,专门设计用来处理RTP协议,它提供了丰富的功能来简化开发过程。
在这个场景中,我们将深入探讨如何基于`jrtplib`库接收RTP数据,重组这些数据,并最终还原RTP上的音视频流。
RTP通常与RTCP(实时传输控制协议)一起使用,以确保数据的可靠传输和质量反馈。
`jrtplib`库提供了一个完整的框架,包括RTP和RTCP的实现,使得开发者能够轻松地创建发送和接收RTP数据的应用。
接收RTP数据时,你需要创建一个`RTPSession`对象,这是`jrtplib`的核心类。
通过设置必要的参数,如端口号、IP地址等,你可以初始化这个会话。
然后,你需要注册一个RTP接收者,这通常是通过实现`RTPReceiver`接口并将其传递给`RTPSession`来完成的。
接收者将处理到来的RTP包,并可能需要进行一些解码工作。
RTP数据包通常是乱序到达的,因为它们通过网络传输时可能会经历不同的路由。
因此,重组RTP数据是至关重要的。
`jrtplib`库提供了RTP包序列号和时间戳,帮助你正确地排序和重组这些包。
你需要跟踪每个媒体流的序列号,以便按顺序组装帧。
对于H264视频,还需要处理NAL单元,可能需要重组NAL单元头和FU指示器。
对于AAC音频,需要处理ADTS头或AAC帧。
对于H264编码的视频,RTP包可能包含SPS(序列参数集)、PPS(图片参数集)和IDR(即时解码刷新)帧,以及编码的I/P/B帧。
这些都需要按照正确的顺序重组,以重构完整的视频流。
`jrtplib`提供了方法来检测和提取这些特殊类型的包,以便正确解析和存储。
对于AAC音频,RTP包通常包含编码后的AAC帧,可能以ADTS头的形式出现。
ADTS头包含了帧的长度和类型信息,你需要解析这些头来正确解码音频数据。
在成功重组RTP数据后,下一步是将音视频数据解码为原始格式。
对于H264,你可以使用像FFmpeg这样的库进行解码。
对于AAC,也有类似的解码器可用。
解码后的数据可以送入播放器,以便用户听到声音或看到画面。
总结来说,使用`jrtplib`库接受RTP数据并还原音视频流涉及以下几个关键步骤:1.初始化`RTPSession`,设置参数并注册接收者。
2.使用库提供的功能重组乱序的RTP包。
3.解析H264的NAL单元和AAC的ADTS头。
4.重组SPS、PPS、IDR帧和编码帧,对H264视频进行解码。
5.解码AAC音频帧。
6.将解码后的音视频数据送入播放器进行播放。
在实际项目中,还需要处理错误,例如丢失的包、网络中断等,并且可能需要考虑与其他协议(如SDP)的集成,以获取媒体描述信息。
`jrtplib`虽然不包含实际项目应用,但它提供了一套强大且灵活的工具,可以帮助开发者构建高效可靠的RTP应用程序。
2025/10/21 17:12:07 1.68MB jrtplib ,rtp,h264 ,aac
1
多车场多车型车辆路径问题的改进遗传算法,车辆路径问题(Vehicleroutingproblem,VRP)由Dantzing和Ramser于1959年首次提出,它是指对一系列发货点(或收货点),组织适当的行车路线,满足客户的需求,并在一定的约束条件下,达到一定的目标(诸如路程最短、成本最小、耗费时间尽量少等),属于NP难度问题。
2025/10/21 16:49:47 209KB 多车场多车型 车辆路径 遗传算法
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡