目录第1章数字信号处理引言  1.1引言  1.2数字信号处理起源  1.3信号域  1.4信号分类  1.5DSP:一个学科第2章采样原理  2.1引言  2.2香农采样原理  2.3信号重构  2.4香农插值  2.5采样方法  2.6多通道采样  2.7MATLAB音频选项第3章混叠  3.1引言  3.2混叠  3.3圆判据  3.4IF采样第4章数据转换和量化  4.1域的转换  4.2ADC分类  4.3ADC增强技术  4.4DSP数据表示方法  4.5量化误差  4.6MAC单元  4.7MATLAB支持工具第5章z变换  5.1引言  5.2z变换  5.3原始信号  5.4线性系统的z变换  5.5z变换特性  5.6MATLABz变换设计工具  5.7系统稳定性  5.8逆z变换  5.9赫维赛德展开法  5.10逆z变换MATLAB设计工具  第6章有限冲激响应滤波器[1]6.1引言  6.2FIR滤波器  6.3理想低通FIR滤波器  6.4FIR滤波器设计  6.5稳定性  6.6线性相位  6.7群延迟  6.8FIR滤波器零点位置  6.9零相位FIR滤波器  6.10最小相位滤波器第7章窗函数设计法  7.1有限冲激响应综述  7.2基于窗函数的FIR滤波器设计  7.3确定性设计  7.4数据窗  7.5基于MATLAB窗函数的FIR滤波器设计  7.6Kaiser窗函数  7.7截尾型傅里叶变换设计方法  7.8频率采样设计法第8章最小均方设计方法  8.1有限冲激响应综述  8.2最小二乘法  8.3最小二乘FIR滤波器设计  8.4MATLAB最小均方设计  8.5MATLAB设计对比  8.6PRONY方法第9章等波纹设计方法  9.1等波纹准则  9.2雷米兹交换算法  9.3加权等波纹FIR滤波器设计  9.4希尔伯特等波纹FIR滤波器  9.5等波纹滤波器阶次估计  9.6MATLAB等波纹FIR滤波器实现  9.7LPFIR滤波器设计  9.8基于Lp范数的MATLAB滤波器设计第10章FIR滤波器特例  10.1引言  10.2滑动平均FIR滤波器  10.3梳状FIR滤波器[1]10.4L波段FIR滤波器  10.5镜像FIR滤波器  10.6补码FIR滤波器  10.7频率抽样滤波器组  10.8卷积平滑FIR滤波器  10.9非线性相位FIR滤波器  10.10FarrowFIR滤波器第11章FIR的实现  11.1概述  11.2直接型FIR滤波器  11.3转置结构  11.4对称FIR滤波器结构  11.5格型FIR滤波器结构  11.6分布式算法  11.7正则符号数  11.8简化加法器图  11.9FIR有限字长效应  11.10计算误差  11.11缩放  11.12多重MAC结构[1]第12章经典滤波器设计  12.1引言  12.2经典模拟滤波器  12.3模拟原型滤波器  12.4巴特沃斯原型滤波器  12.5切比雪夫原型滤波器  12.6椭圆原型滤波器  12.7原型滤波器到最终形式的转换  12.8其他IIR滤波器形式  12.9PRONY(PADE)法  12.10尤尔—沃尔第13章无限冲激响应滤波器设计  13.1引言  13.2冲激响应不变法  13.3冲激响应不变滤波器设计  13.4双线性z变换法  13.5翘曲  13.6MATLABIIR滤波器设计  13.7冲激响应不变与双线性z变换IIR对比  13.8最优化第14章状态变量滤波器模型  14.1状态空间系统  14.2状态变量  14.3模拟仿真  14.4MATLAB仿真  14.5状态变量模型  14.6基变换  14.7MATLAB状态空间  14.8转置系统  14.9MATLAB状态空间算法结构第15章数字滤波器结构  15.1滤波器结构  15.2直Ⅰ、Ⅱ型结构  15.3直Ⅰ、Ⅱ型IIR滤波器的MATLAB相关函数  15.4直Ⅰ、Ⅱ型结构的MATLAB实现  15.5级联型结构  15.6一阶、二阶子滤波器  15.7一阶、二阶子滤波器的MATLAB实现[1]15.8并联型结构  15.9级联/并联型结构的MATLAB实现  15.10梯型/格型IIR滤波器第16章定点效应  16.1背景  16.2定点系统  16.3溢
1
随着德国的“工业4.0”、美国的“再工业化”风潮、“中国制造2025”等国家战略的推出,以及云计算、大数据、人工智能、物联网等新一代信息技术与制造技术的加速融合,工业控制系统由从原始的封闭独立走向开放、由单机走向互联、由自动化走向智能化。
在工业企业获得巨大发展动能的同时,也出现了大量安全隐患,而工业控制系统作为国家关键基础设施的“中枢神经”,其安全关系到国家的战略安全、社会稳定。
2024/8/11 7:58:49 953KB 网络安全
1
项目描述: 主函数分为两部分:1.登录函数 2.主菜单功能函数 一、登录函数运用到坐标读取,bmp图片显示,文件读写等操作,其中,注册用户用到了文件的写入, 把注册的信息写入到用户信息文本。
登录时,用到文件的读,把存放用户信息的文本内容读取出来并存放在单向链表中, 登录时,通过字符串比较函数匹配账号密码时候正确 二、是主菜单功能函数,该函数主要有四部分功能函数组成,分别为音乐播放函数,视频播放函数,电子相册,2048小游戏函数组成 音乐播放函数:主要利用递归读取目录把读到的.mp3后缀名的文件的路径名用双向循环链表存放起来,利用madplay相关命令进行播放,暂停等操作。
视频播放函数:主要利用递归读取目录把读到的.mp4或者.avi后缀名的文件的路径名用双向循环链表存放起来,利用mplayer相关命令进行播放,暂停等操作。
电子相册:主要利用归读取目录把读到的.bmp后缀名的文件的路径名用双向循环链表存放起来,利用读取坐标判断点击或者滑动的相关操作进行图片显示 其中,进入电子相册,默认路径下的所有图片均按一定比例缩放在一定区域浏览,可通过滑动翻至另外预览图片页, 也可通过点击预览图片进入原始比例大小查看,在原始比例大小查看期间,可点击放大或者缩小,也可以通过滑动显示下一张图片的原始比例大小的查看。
在图片显示过程中,图片显示效果主要是由中间向两边扩散。
不足之处:图片缩放利用的是直接改变前54字节头结点的信息,当图片宽度w*3%4不等于0时 缩放图片变形(原因:bmp图片特点导致,利用该方法无法解决该缺点) 2048小游戏:利用二维数组表示每行每列的数字,通过方向键或者左右上下滑动来确定数字要移动的方向,通过左右移,上下移的函数算法,进行相应的逻辑处理 最后以图片显示和打印的结果显示。
在每一次改变后,把改变后的二维数组,以及剩余的空白格子数存放在栈式链中,利用栈的后进先出的逻辑实现 返回上一步的功能
2024/8/8 4:46:45 33KB 文件io 音视频 相册 2048小游戏
1
利用stm32f407驱动ms5837深度传感器模块,并将读到的原始数据进行处理,通过串口输出到电脑中
2024/8/7 21:13:30 3.47MB stm32f407 ms5837 深度传感器
1
acerG41T-AM原始BIOS
2024/8/5 7:54:45 1024KB bios
1
通过原始迭代公式计算高斯投影的坐标及经纬度,提供了54坐标系,西安80系,WGS-84系和CGCS2000系四种椭球参数
2024/8/5 7:27:26 2.36MB 高斯投影 坐标换算
1
在Windows下基于Qt开发的可以将多种格式的图片转为灰度图的工具程序使用时会自动缩放图片进行显示,但保存图片将保存原始大小
2024/8/3 3:14:24 20.59MB Qt 灰度图 图片 Qt5
1
IBMi2Analyst'sNotebook是一款由i2公司提供的强大的应用程序,让您可从不同的原始数据收集且呈现可视化信息,再利用多种分析工具进行情报分析。
本教材共228页,涵盖了I2使用的方方面面,是目前国内最权威的培训教程,一本书教你玩转I2.
2024/8/3 3:54:45 25.9MB IBM I2 Notegbook 培训
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
PT1000分度表原始数据u32_tPT1000[1000]={1000.000,1000.391,1000.782,1001.172,1001.563,1001.954,1002.345,1002.736,1003.126,1003.517,1003.908
2024/7/27 9:50:50 7KB PT1000
1
共 850 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡