vvvv是款神奇的交互软件,您不需编程基础,就可通过它简单的图形化编辑,能够实现大型媒体与物理接口互通,实时动态图像演示,音频和视频处理,虚拟人机互动等等千变万化的功能。
国外运用已经如火如荼。
包中几个vvvv小Demo可以帮助您拓展节点运用的巧妙功能。
2024/10/16 16:31:54 14KB vvvv 技巧 功能 互动
1
二维稳态导热的数值计算主要采用了热平衡法。
用差分法建立节点的热平衡方程,将节点所在的单元体的四个方向传递的热流密度,内热源在单元体产生的热流密度,根据能量守恒的原则建立方程,可以得到每一个节点的离散化代数方程。
进行数值计算的方法是:先设定初值,在根据初值对每一个节点进行迭代可以求得节点的值。
再将初值与新值进行比较,判断迭代的敛散性。
比较常用的迭代方法有两种:Gauss-Seidel法和Jacobi法。
Gaus-Seidel法每次迭代计算,均是使用节点温度的最新值。
Jacobi迭代法每次迭代计算均用上一次迭代计算出的值。
对于一个代数方程组,若选用的迭代方式不合适有可能导致迭代过程发散,而对于常物性导热问题组成差分方程组,每一个方程都选用导出方程的中心节点温度作为迭代变量则迭代一定收敛。
2024/10/16 14:33:39 2.28MB 二维稳态导热
1
冯网络便携式开发级别的IndyNode网络,包括LedgerBrowser。
分类帐浏览器(例如BCGov的的)允许用户查看网络节点的状态并浏览/搜索/过滤分类帐交易。
von-network正在作为可验证组织网络(VON)的一部分进行开发。
有关VON的更多信息,请参见。
甚至更好-加入我们的工作,为VON,Aries和Indy社区做出贡献。
VON-NetworkLedger浏览器和API使用“分类帐浏览器”(例如::),您可以看到:分类帐节点的状态JSON格式的分类帐节点的详细状态(单击“详细状态”链接)Indy网络的三个分类帐-域,池和配置(单击相应的链接)IndyNetwork实例的GenesisTransactions。
在IndyAgent中,使用URL/genesis来获取要用于初始化Agent的创世纪文件。
2024/10/16 11:18:10 109KB Python
1
基于EnigmaCEO的麻省理工大学理论,Enigma通过工作在协议层的离线网络解决了现有区块链的扩展性和隐私性。
Enigma的关键技术是“隐私交易”特性,它允许数据通过Enigma节点网络进行处理的同时保证数据的隐私性。
2024/10/16 7:54:14 189KB Enigma
1
通过研究OLSR协议及MPR技术之后,利用OPNET仿真工具在节点高速运动的环境下,对协议进行了仿真,通过网络吞吐量、路由开销、数据分组成功接收率等参数来评价MANET网络性能的指标。
2024/10/15 22:01:16 100KB MANET、OLSR
1
C语言编写的IEEE30节点潮流计算程序,经过仿真和验证证明程序编写正确,可以和matpower进行对比验证。

2024/10/13 21:10:43 16KB 潮流计算 C语言
1
ieee10机39节点系统数据,主要是BPA数据!
2024/10/12 14:40:06 833KB ieee 10机39 节点系统 数据
1
IEC61850协议是一系列规则的集合,它详细描述了分层的变电站通信体系。
在IEC61850中,数据的描述用服务器(Server)、逻辑设备(LD)、逻辑节点(LN)、数据对象(DO)、数据对象属性(DataAttribute)来构建。
这种分层结构可以将设备的所有信息以标准化的格式描述出来,保证来自不同厂商的设备可以读懂对方的配置信息,实现互操作性。
2024/10/10 12:32:50 13.97MB 智能变电站 IEC61850
1
分析了无线传感器网络中端到端误码率给定情况下协作波束形成的能量效率,给出了不同路径损耗因子和传输距离下的最优协作发射节点个数。
首先,综合考虑发射能耗和电路能耗,给出了接近实际情况的系统能耗模型,并推导出系统能耗与误码率之间的近似闭式关系。
然后,基于该近似模型,给出了不同路径损耗因子和传输距离下使系统能耗最小的优化协作发射节点个数。
理论分析和仿真结果表明:在系统调制方式和误码率给定的情况下,存在着一个临界距离使协作波束形成比非协作传输和协作空时编码都更节能;而且在不同路径损耗因子和传输距离下,存在不同的最优协作发射节点个数使系统能耗最小。
2024/10/10 7:04:54 1.04MB 研究论文
1
计算网络节点收缩后的重要度,并对电源和负荷节点进行归一化
2024/10/9 12:01:52 3KB 节点重要度
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡