涡旋盘法是一种在航空航天工程中用于计算空气动力学特性,特别是翼型或机翼表面流场的方法。
NACA2412是一个经典的翼型,广泛应用于教学和研究。
这个翼型是由美国国家航空咨询委员会(NACA)设计的,其命名规则中的“2412”表示了翼型的厚度分布特性:2%的最大厚度位置位于弦长的12%处。
NACA系列翼型因其简单而实用的设计,被众多飞行器采用。
在这个项目中,我们看到与MATLAB相关的开发工作,这表明作者可能使用MATLAB编程语言来实现涡旋盘法对NACA2412翼型的流体力学计算。
MATLAB是一款强大的数值计算和数据可视化软件,尤其适合进行复杂的数学运算和算法开发。
在航空航天领域,MATLAB常用于仿真、优化和数据分析。
"Panel_Coordinates.m.zip"是压缩包内的文件,根据名字推测,它可能包含了一个名为"Panel_Coordinates"的MATLAB脚本或函数。
在流体动力学中,面板方法是一种常用的技术,通过将翼型表面划分为多个小的二维平面元素(面板),然后对每个面板应用边界层理论来近似翼型周围的流动情况。
"Coordinates"部分暗示这个脚本可能负责定义这些面板的几何坐标,这是计算流场前的重要步骤。
在MATLAB中实现涡旋盘法,通常包括以下步骤:1.**翼型坐标定义**:读取或生成NACA2412翼型的参数化坐标,这通常涉及解决NACA翼型的四个参数方程。
2.**面板划分**:将翼型表面划分为多个面板,每个面板具有自己的几何属性,如面积、中心位置等。
3.**涡旋强度分配**:为每个面板分配涡旋强度,这可能涉及到边界条件的设定,如无滑移边界条件(在翼型表面上)和自由流边界条件(在远处)。
4.**积分求解**:利用格林定理,通过对邻接面板间的积分,计算出各面板上的诱导速度和压力。
5.**迭代优化**:为了得到更精确的结果,可能需要进行迭代过程,不断调整面板上的涡旋强度,直到满足特定的收敛准则。
6.**结果可视化**:使用MATLAB的绘图工具展示流场信息,如速度矢量图、压力系数分布等。
通过这个MATLAB开发项目,用户可以深入理解涡旋盘法的基本原理,并实际操作实现对NACA2412翼型的流体力学分析。
这种方法不仅适用于学术研究,也有助于工程师在设计飞行器时评估其气动性能。
对于学习者来说,这是一个很好的实践案例,能够将理论知识与实际编程相结合,提升解决实际问题的能力。
2025/5/17 12:23:28 2KB matlab
1
"计算机系统结构张晨曦版课后答案"本资源摘要信息将对计算机系统结构的基本概念、虚拟机、翻译、计算机系统结构、计算机组成、计算机实现、系统加速比、Amdahl定律、程序的局部性原理、CPI、测试程序套件、存储程序计算机、系列机、软件兼容、向上(下)兼容、向后(前)兼容、兼容机、模拟、仿真、并行性、时间重叠、资源重复、资源共享、耦合度、紧密耦合系统、松散耦合系统、异构型多处理机系统、同构型多处理机系统等进行详细的解释和分析。
计算机系统结构是指计算机的逻辑设计和物理实现,它是计算机科学的基础。
计算机系统结构可以分为多级层次结构,每一层以一种不同的语言为特征。
这种层次结构包括微程序机器级、传统机器语言机器级、汇编语言机器级、高级语言机器级、应用语言机器级等。
虚拟机是指用软件实现的机器,可以模拟其他计算机的指令系统。
翻译是指将高一级机器上的程序转换为低一级机器上的等效程序,然后在低一级机器上运行,实现程序的功能。
计算机系统结构的逻辑实现是计算机组成,包括物理机器级中的数据流和控制流的组成以及逻辑设计等。
计算机实现是计算机组成的物理实现,包括处理机、主存等部件的物理结构、器件的集成度和速度、模块、插件、底板的划分与连接、信号传输、电源、冷卻及整机装配技术等。
系统加速比是对系统中某部分进行改进时,改进后系统性能提高的倍数。
Amdahl定律是指当对一个系统中的某个部件进行改进后,所能获得的整个系统性能的提高,受限于该部件的执行时间占总执行时间的百分比。
程序的局部性原理是指程序执行时所访问的存储器地址不是随机分布的,而是相对地簇聚。
CPI是每条指令执行的平均时钟周期数。
测试程序套件是由各种不同的真实应用程序构成的一组测试程序,用来测试计算机在各个方面的处理性能。
存储程序计算机是冯诺依曼结构计算机,其基本点是指令驱动。
程序预先存放在计算机存储器中,机器一旦启动,就能按照程序指定的逻辑顺序执行这些程序,自动完成由程序所描述的处理工作。
系列机是由同一厂家生产的具有相同系统结构、但具有不同组成和实现的一系列不同型号的计算机。
软件兼容是指一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上运行。
向上(下)兼容是指按某档计算机编制的程序,不加修改就能运行于比它高(低)档的计算机。
向后(前)兼容是指按某个时期投入市场的某种型号计算机编制的程序,不加修改地就能运行于在它之后(前)投入市场的计算机。
兼容机是由不同公司厂家生产的具有相同系统结构的计算机。
模拟是用软件的方法在一台现有的计算机(称为宿主机)上实现另一台计算机(称为虚拟机)的指令系统。
仿真是用一台现有计算机(称为宿主机)上的微程序去解释实现另一台计算机(称为目标机)的指令系统。
并行性是计算机系统在同一时刻或者同一时间间隔内进行多种运算或操作。
只要在时间上相互重叠,就存在并行性。
它包括同时性与并发性两种含义。
时间重叠是指在并行性概念中引入时间因素,让多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。
资源重复是指在并行性概念中引入空间因素,以数量取胜。
通过重复设置硬件资源,大幅度地提高计算机系统的性能。
资源共享是这是一种软件方法,它使多个任务按一定时间顺序轮流使用同一套硬件设备。
耦合度是反映多机系统中各计算机之间物理连接的紧密程度和交互作用能力的强弱。
紧密耦合系统是指计算机之间的物理连接的频带较高,一般是通过总线或高速开关互连,可以共享主存。
松散耦合系统是指计算机之间的物理连接的频带较低,一般是通过通道或通信线路实现计算机之间的互连,可以共享外存设备(磁盘、磁带等)。
异构型多处理机系统是指由多个不同类型、至少担负不同功能的处理机组成,它们按照作业要求的顺序,利用时间重叠原理,依次对它们的多个任务进行加工,各自完成规定的功能动作。
同构型多处理机系统是指由多个同类型或至少担负同等功能的处理机组成,它们同时处理同一作业中能并行执行的多个任务。
2025/5/14 22:51:14 45KB
1
随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。
本文介绍了医护人员排班系统的开发全过程。
通过分析医护人员排班系统管理的不足,创建了一个计算机管理医护人员排班系统的方案。
文章介绍了医护人员排班系统的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。
本医护人员排班系统管理员,医护。
管理员功能有个人中心,医院信息管理,医护信息管理,医护类型管理,排班信息管理,排班类型管理,科室信息管理,投诉信息管理。
医护人员可以修改自己的个人信息,查看自己的排班信息,查看我的收藏信息。
因而具有一定的实用性。
本站是一个B/S模式系统,采用SpringBoot框架,MYSQL数据库设计开发,充分保证系统的稳定性。
系统具有界面清晰、操作简单,功能齐全的特点,使得医护人员排班系统管理工作系统化、规范化。
本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高医护人员排班系统管理效率。
2025/5/12 17:19:02 15.44MB spring boot spring boot
1
PSCAD是电力系统专业必须掌握的一门学问,本书是专业介绍PSCAD的一本精细教材总共分为3部分,这是第一部分
2025/5/8 18:21:54 93.95MB PSCAD 电力系统 电磁暂态
1
运用jsp、servlet、html5、css、json、ajax、jquery等技术,但只完善了部分功能
2025/5/8 16:56:48 7.74MB java web开发示例
1
###DSP伺服电机控制+PI算法####一、引言随着现代工业技术和信息技术的快速发展,交流伺服系统因其高精度和高性能而在众多伺服驱动领域得到了广泛应用。
为了满足工业应用中的需求,如快速响应速度、宽广的调速范围、高精度定位以及运行稳定性等关键性能指标,伺服电机及其驱动装置、检测单元以及控制器的设计变得尤为重要。
本文以提高交流伺服系统的性能为目标,深入探讨了基于DSP的伺服系统控制策略,并特别关注于电机定位问题。
####二、伺服系统概述伺服系统是一种闭环控制系统,其核心在于能够精确控制机械运动的位置、速度或力矩。
通常由伺服电机、驱动器、反馈传感器和控制器四大部分组成。
在现代工业生产中,伺服系统被广泛用于各种精密加工设备中,例如数控机床、机器人手臂等。
####三、无刷直流电机(BLDCM)的特点及应用无刷直流电机(BrushlessDirectCurrentMotor,BLDCM)作为一种先进的电机类型,在许多高性能伺服系统中得到广泛应用。
其优点包括效率高、寿命长、可靠性好等特点。
本文选择无刷直流电机作为执行电机,并对其结构和工作原理进行了详细分析,建立了数学模型,介绍了传递函数及其工作特性。
####四、位置检测方法在无刷直流电机中,位置检测是一项关键技术。
传统的有位置传感器方案(如霍尔传感器)存在一定的局限性,因此,本文提出了基于反电势检测法的无位置传感器技术,并进一步提出了利用最小均方误差自适应噪声抵消(LeastMeanSquaresAdaptiveNoiseCancellation,LMSANC)的方法来实现换向位置的检测,从而提高了电机在低速时的工作效率。
####五、电机定位技术电机定位是伺服系统的关键技术之一,涉及到快速性、高精度以及稳定性等多个方面。
为了提高电机的定位精度,本文采用了多种控制策略:1.**快速制动**:通过对不同制动方式的仿真分析,本文选择了回馈制动和反接制动相结合的方法,以确保制动过程的快速性。
2.**全数字闭环伺服系统**:使用TMS320LF2407DSP作为核心控制器,配合霍尔电流传感器、位置传感器和光电编码器进行信号采集和速度计算。
3.**控制算法优化**:-**电流调节环**:采用PI算法,能够保证电流的快速调节且稳态无静差。
-**速度环**:采用滑模变结构控制算法,实现了速度的实时调节和动态无超调。
-**位置控制环**:引入模糊PI(Fuzzy-PI)结合的方法,在位置偏差较大时采用模糊算法进行调节,快速减小偏差;
当偏差较小时则采用PI算法,确保系统平稳减速,达到精确停车的目的。
####六、硬件设计硬件设计是伺服系统实现的关键环节。
本文详细介绍了控制系统的整体设计思路,包括主要模块的电路设计、器件选择及参数设置等内容。
####七、软件设计软件部分采用模块化设计,包括但不限于初始化程序、中断处理程序、控制算法实现等。
文章还详细绘制了各主要功能模块的流程图,便于理解整个系统的软件架构。
####八、实验验证通过对所设计的伺服系统进行一系列实验验证,证明了其在实际应用中的可行性和有效性。
实验结果表明,该系统不仅能够实现高速响应和高精度定位,而且在稳定性方面也表现出色。
本文通过采用基于DSP的伺服系统控制策略,并结合PI算法等智能控制技术,成功地解决了电机定位问题,为提高交流伺服系统的性能提供了有效的解决方案。
2025/5/8 15:45:30 4.75MB 伺服电机控制+PI算法
1
Struts开始于2000年3月,是采用JavaServlet/JavaServerPages技术,开发Web应用程序的开放源码的框架。
当前最新的正式版本是1.0.2,本文内容就是针对这个版本的。
采用Struts能开发出基于MVC(Model-View-Controller)设计模式的JavaWeb前端应用。
通常MVC设计模式把一个系统划分为相互协作的三个部分:1.Model(模型),模型用于封装系统的状态,比如业务数据;
2.View(视图),视图是模型的表示,提供用户交互界面。
当模型状态发生变化时,视图应该得到通知,以便更新模型的变化;
3.Controller(控制器),接受来自视图的请求,
1
###无线传感器网络时间同步技术综述####引言无线传感器网络(WirelessSensorNetworks,WSN)是一种能够自主构建的网络形式,通过在指定区域内部署大量的传感器节点来实现对环境信息的采集与传输。
这些传感器节点通过无线方式相互连接,并能够形成一个多跳的自组织网络,用于监测特定环境下的数据并将数据发送至远程中心进行处理。
随着WSN在各个领域的广泛应用,如交通监控、环境保护、军事侦察等,确保网络中各节点之间的时间同步变得尤为重要。
####同步技术研究现状时间同步技术是无线传感器网络中的核心技术之一,其主要目的是确保网络中的所有节点能够维持一致的时间基准。
这项技术的发展相对较晚,直到2002年才在HotNets会议上被首次提出。
自那时起,学术界和工业界对此展开了广泛的研究,开发出了一系列有效的时间同步算法。
对于单跳网络而言,时间同步技术已经相当成熟,但在多跳网络环境下,由于同步误差随距离增加而累积,现有的单跳网络同步方法很难直接应用于多跳网络中。
此外,如果考虑到传感器节点可能的移动性,时间同步技术的设计将会变得更加复杂。
####时间同步算法针对无线传感器网络的时间同步需求,研究人员提出了多种算法,其中最具代表性的三种算法分别为泛洪时间同步协议(FloodingTimeSynchronizationProtocol,FTSP)、根时钟同步协议(Root-BasedSynchronization,RBS)以及局部时间同步协议(LocalizedTimeSynchronization,LTS)。
#####泛洪时间同步协议(FTSP)FTSP是一种分布式时间同步算法,它通过在网络中泛洪同步消息来实现节点间的时间同步。
每个节点都会接收到来自邻居节点的时间戳,并据此调整自己的时钟,以减少时钟偏差。
该协议简单易实现,适用于小型网络,但对于大规模网络可能存在较大的同步误差。
#####根时钟同步协议(RBS)RBS协议采用了一个中心节点作为根节点,其他所有节点都需要与根节点保持时间同步。
这种中心化的同步机制能够有效地减少同步误差的累积,但对根节点的依赖性较高,一旦根节点出现故障,整个网络的同步性将受到严重影响。
#####局部时间同步协议(LTS)LTS协议是一种去中心化的同步算法,旨在解决多跳网络中的时间同步问题。
每个节点仅需与其直接邻居节点进行同步,从而减少了全局同步的复杂度。
这种方法适用于动态变化的网络环境,但由于依赖局部信息,可能会导致全局时间偏差的累积。
####小结通过对无线传感器网络中时间同步技术的研究现状及几种典型同步算法的介绍,我们可以看出时间同步技术在WSN中具有重要意义。
虽然目前已经有了一些有效的解决方案,但在实际应用中仍存在诸多挑战,如同步精度、能耗控制以及适应动态网络环境的能力等。
未来的研究工作需要继续探索更高效、更稳定的时间同步机制,以满足日益增长的应用需求。
###基于无线传感器网络的环境监测系统####网络系统简介基于无线传感器网络的环境监测系统是一种利用大量传感器节点实时采集并传输环境数据的系统。
这类系统通常由多个传感器节点组成,这些节点可以监测各种环境参数,如温度、湿度、光照强度等,并将数据传输至中央处理单元进行分析处理。
####网络系统结构-**总体结构**:环境监测系统的核心是传感器节点,它们通过无线方式相互连接,并能够自动构建一个多跳网络。
此外,还需要设置一个或多个会聚节点,用于收集来自传感器节点的数据,并将其转发至数据中心或用户终端。
-**传感器节点结构**:传感器节点通常包含一个或多个传感器、处理器、无线通信模块以及电源供应部分。
这些节点负责数据的采集、处理及发送。
-**会聚节点结构**:会聚节点的主要功能是汇总来自多个传感器节点的数据,并通过有线或无线方式将这些数据传输至远程服务器或用户终端。
会聚节点通常具备更强的计算能力和存储能力,以便支持大数据量的处理和传输。
####应用无线传感器网络的意义无线传感器网络在环境监测方面的应用具有重要意义:-**提高监测精度**:通过部署大量传感器节点,可以实现对环境参数的高密度监测,从而提高数据的准确性和可靠性。
-**降低成本**:相比传统的监测手段,无线传感器网络可以显著降低建设和维护成本。
-**增强实时性**:无线传感器网络能够实时传输数据,使用户能够及时获取环境变化信息,这对于需要快速响应的情况尤为关键。
###学习心得通过本次课程的学习,我对无线传感器网络有了更加深入的理解。
特别是关于时间同步技术的重要性及其在实际应用中的挑战,这不仅加深了我对理论知识的认识,也为将来可能从事的相关工作打下了坚实的基础。
此外,基于无线传感器网络的环境监测系统的介绍让我看到了这项技术在环境保护方面的巨大潜力,激发了我对未来进一步探索的兴趣。
###结语无线传感器网络作为一种新兴的技术,在多个领域展现出巨大的应用前景。
时间同步技术作为其核心组成部分之一,对于保证网络性能至关重要。
随着技术的进步,相信未来的无线传感器网络将更加完善,为人们的生活带来更多便利。
2025/5/7 17:13:57 191KB
1
《无线传感器网络结课论文终稿》探讨了无线传感器网络的时间同步技术和在环境监测系统中的应用,这两大主题是理解无线传感器网络核心技术的关键。
一、无线传感器网络时间同步技术综述时间同步对于无线传感器网络(WirelessSensorNetworks,WSNs)的正常运行至关重要,因为它确保了节点间数据交换的准确性和一致性。
引言部分强调了时间同步的重要性,特别是在事件检测、定位和协同计算等任务中。
目前的研究现状表明,时间同步技术已经成为WSNs研究的热点,其目的是克服网络中由于节点分布广泛和通信延迟等因素导致的时间差异。
同步技术主要涵盖以下几个方面:1.泛洪时间同步协议(FloodingTimeSynchronizationProtocol,FTS):这是一种基础的同步方法,通过在网络中广播同步消息来实现所有节点的时间同步。
然而,这种协议效率较低,因为大量的同步消息可能会导致网络拥塞。
2.RBS(ReferenceBroadcastSynchronization)协议:该协议采用分层结构,通过选择一部分节点作为时间参考节点,其他节点与这些参考节点进行同步,减少了同步消息的数量,提高了效率。
3.LTS(LocalizedTimeSynchronization)协议:LTS更侧重于局部区域的同步,它允许节点仅与其相邻节点同步,减少了全局通信开销,增强了网络的能源效率。
小结部分指出,虽然各种协议各有优势,但选择合适的同步策略需考虑网络规模、能量限制以及应用场景的具体需求。
二、基于无线传感器网络的环境监测系统环境监测是无线传感器网络广泛应用的一个领域。
这部分详细介绍了如何构建这样的系统。
1.网络系统简介:无线传感器网络用于实时、分布式地收集环境数据,例如温度、湿度、光照强度等,以监测和分析环境变化。
2.网络系统结构:系统由大量低功耗的传感器节点组成,这些节点负责数据采集;
汇聚节点则负责数据聚合和传输到中央处理中心。
总体结构分为物理层、网络层、数据链路层和应用层,各层都有特定的任务和功能。
3.传感器节点结构:包括传感器模块、处理器、存储器、无线通信模块和电源。
传感器模块负责感知环境,处理器处理数据,无线通信模块负责节点间的通信,存储器存储程序和数据,电源为整个系统供电。
4.汇聚节点结构:除了传感器节点的基本组件外,汇聚节点通常拥有更强的计算能力和更大的存储空间,能够处理来自多个传感器节点的数据,并通过有线或无线方式将聚合数据发送到远程监控中心。
基于无线传感器网络的环境监测系统具有实时性、分布式和自组织的特点,对于环境保护、灾害预警和城市智能管理等领域有着重要的应用价值。
无线传感器网络的时间同步技术和环境监测系统的构建是其核心研究内容。
这些技术的不断发展和完善,将推动无线传感器网络在物联网、智慧城市和环境科学等领域的广泛应用。
2025/5/7 16:47:17 178KB
1
16.3系统功能预览 16.3.1选择聊天室网上临时聊天功能16.3.2注册成永久用户功能16.3.3以永久用户登陆选择聊天室聊天功能16.3.3创建临时聊天室进行聊天功能16.3.4管理员修改公开聊天室功能16.3.5管理员删除公开聊天室功能16.3.5管理员管理黑名单-限制IP地址登陆功能16.3.6管理员管理永久用户功能16.4系统分析 16.4.1系统功能模块划分 16.4.2系统流程分析 16.5系统设计 16.5.1数据库逻辑结构设计 16.5.2创建数据库 16.5.3创建表的脚本文件 16.5.4目录和包结构 16.5.5定义HibernateUtil 16.5.6定义Spring配置 16.5.7DAO数据层设计 16.6界面设计及实现 16.6.1选择聊天室首页界面 16.6.2用户聊天界面16.6.3永久用户注册界面 16.6.4永久用户登陆界面 16.6.5永久用户创建临时聊天室界面 16.6.6管理员管理黑名单界面16.6.7管理员管理聊天室界面 16.6.8管理员管理永久用户界面 16.7数据层代码实现 16.7.1创建对象/关系映射文件 16.7.2创建持久化类 16.7.3创建实现DAO模式的公用部分 16.8功能代码实现概述 16.9选择聊天室网上临时聊天功能 16.9.1聊天功能的逻辑设计 16.9.2配置Struts 16.9.3创建模型ChatInfo 16.9.4聊天功能 16.10注册成永久用户功能 16.10.1注册功能的逻辑设计 16.10.2配置Struts 16.10.3创建模型UserInfo 16.10.4聊天功能 16.11以永久用户登陆选择聊天室聊天功能 16.11.1登陆功能的逻辑设计 16.11.2配置Struts 16.11.3创建模型LoginInfo 16.11.4登陆功能16.12创建临时聊天室进行聊天功能 16.12.1添加临时聊天室功能的逻辑设计 16.12.2配置Struts 16.12.3创建模型LoginInfo 16.12.4添加临时聊天室功能 16.13管理员管理公开聊天室功能 16.13.1管理员管理公开聊天室功能的逻辑设计 16.13.2配置Struts 16.13.3创建模型ChatRoomInfo 16.13.4创建公开聊天室的数据访问对象ChatRoomDAOImp 16.13.5查看公开聊天室列表功能 16.13.6添加公开聊天室功能 16.13.7删除公开聊天室功能 16.13.8编辑公开聊天室信息功能 16.14.管理员管理黑名单-限制IP地址登陆功能16.14.1登陆功能的逻辑设计 16.14.2配置Struts 16.14.3创建模型ChatRoomInfo 16.14.4限制IP地址功能16.15管理员管理永久用户功能16.15.1登陆功能的逻辑设计 16.15.2配置Struts 16.15.3创建模型UserInfo 16.13.5查看永久用户列表功能 16.15.4限制ID登陆功能 16.15.4限制IP地址发言功能 16.16运行工程 16.16.1开发平台 16.16.2创建工程 16.16.3运行工程 16.17本章小结
2025/5/7 0:43:16 12.14MB Java struts2 hibernate spring
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡