非常清晰,共14章第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1§1.1测绘学的任务及作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1§1.2数字测图的发展概况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3§1.3学习数字测图原理与方法的目的和要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4第二章测量的基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6§2.1地球形状和大小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6§2.2测量常用坐标系和参考椭球定位⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8§2.3地图投影和高斯平面直角坐标系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12§2.4高程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19§2.5用水平面代替水准面的限度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20§2.6方位角⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22§2.7地形图的基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24§2.8地形图的分幅与编号⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31第三章测量误差基本知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42§3.1观测误差的分类⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42§3.2衡量精度的标准⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45§3.3算术平均值及观测值的中误差⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯48§3.4误差传播定律⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯51§3.5加权平均值及其精度评定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55§3.6间接平差原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯58第四章水准测量和水准仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62§4.1水准测量原理与方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62§4.2水准仪和水准尺⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯65§4.3水准测量外业施测⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81§4.4水准测量的误差分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯88目录1§4.5水准仪的检验与校正⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯90第五章角度、距离测量与全站仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103§5.1角度测量原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103§5.2经纬仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯104§5.3角度观测方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯115§5.4水平角观测的误差和精度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123§5.5经纬仪的检验和校正⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯132§5.6距离测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯137§5.7光电测距误差分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯154§5.8光电测距仪的检验⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯158§5.9全站仪和自动全站仪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯162§5.10三角高程测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯166第六章控制测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯172§6.1控制测量概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯172§6.2导线测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯181§6.3交会测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯195§6.4三角网测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯204§6.5高程控制测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯210§6.6全球定位系统(GPS)在控制测量中的应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯219第七章碎部测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯226§7.1碎部
2024/5/3 12:48:14 5.65MB 测绘
1
查阅JPEG编码的有关资料,对图像进行JPEG压缩,算法步骤必须包括如下几个部分:图像分块,离散余弦变换,量化,ac和dc系数的Z字形编排。
问题1:质量因子分别选为20,60,80,对比显示原图与不同质量因子下解码后的图像;
问题2:记录图像大小、压缩比、均方根误差;
对结果进行分析。
2024/5/3 7:32:26 1.28MB Matlab jpeg压缩
1
BP(BackPropagation)神经网络是一种神经网络学习算法。
其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。
相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。
然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程,
2024/5/2 21:19:10 6KB tag
1
在Eb/N0(5db~30db,间隔5db)下的加性高斯白噪声,并且假设信道(AWGN信道、瑞利信道)引入了30度的相位误差,采用QPSK调制信号作为导频信号,试仿真不同情况下的平均相位估计与采样点间曲线。
改变里面参数,并分析其对相位估计的影响。
详见我的博客:高斯信道下信号相位估计
1
简易频率计数器,七分频的,四位显示,multisim10运行因为空间比较小,所以做的有点乱,但是运行起来还是不错的。
可以显示,误差很小!
1
本书是Delft大学Hanssen的经典,详细介绍了合成孔径雷达雷达干涉的原理好误差分析,是雷达干涉的入门必看之书
2024/4/28 22:44:03 16.31MB Hanssen Radar InSAR
1
全套已经做好了,包画图程序,可以交了设计要求用AT89552控制一个电烤箱,要求满足下列要求:(1)用传感器DS18B20温度采集,测温范围:-55℃~+125℃(2)数码管能实时的显示电炉当前的温度(3)能够通过按键来设置想要的温度并显示,键K1~K4的功能分别是:K1-----设置键(按下后开始设置相当于选位)K2-----加一键(对选中位的数加一)K3-----减一键(对选中位的数减一)K4-----启动/复位键(启动功能:对设置完的三位数值的确认并转去实时显示当前的温度值。
复位功能:报警消除)(4)超过设置值-5~+5摄氏度时能发出超限报警,红灯~上限报警,黄灯~下限报警,绿灯~正常。
(5)恒温控制,如果温度低于给定值接通加热电路,反之断开加热电路。
误差在-2~+2摄氏度。
2024/4/24 18:34:37 695KB 单片机温度控制系统設計
1
ErrorBar(误差棒图),是统计学中常用的图形。
ErrorBar图涉及到数据的“平均值”和“标准差”。
shadedErrorBar,并不是matlab官方提供的api函数,而是一位大佬提供的,其开源代码和英文介绍可查阅参考文献。
与ErrorBar不同的是,ErrorBar图中“标准差”和“均值”离散分布的,而在shadeErrorBar中则是连续分布的
2024/4/24 3:03:52 162KB Matlab shadedErrorBar
1
从一组校准的2D多视图图像中准确地重建3D几何形状是一种积极而有效的方法计算机视觉中具有挑战性的任务。
现有的多视图立体声方法通常在恢复方面表现不佳深凹且突出的结构,并且会遇到一些常见问题,例如收敛速度慢,对初始条件的敏感性以及对内存的高要求。
为了解决这些问题,我们建议广义重投影误差最小化的两阶段优化方法(TwGREM),其中提出了一种广义的重投影误差框架,以将立体和轮廓提示整合到一个统一的能量中功能。
为了使函数最小化,我们首先在3D体积网格上引入凸松弛可以使用变量拆分和Chambolle投影有效解决。
然后,得到的表面是参数化为三角形网格并使用表面演化进行精炼以获得高质量的3D重建。
我们使用几种最先进方法进行的比较实验表明,TwGREM的性能基于3D的重建在准确性和效率方面是最高的,尤其是对于具有光滑的纹理和稀疏的视点
2024/4/19 21:58:52 1.24MB 研究论文
1
计算了两图像间四个统计学参数的值,包括互信息,均方根误差,峰值信噪比,交叉熵
2024/4/18 6:45:50 2KB matlab 图像间相似度
1
共 577 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡