本文报道了一种高灵敏度双折射光纤压力传感器.它的结构简单,环境温度的变化几乎不影响它的灵敏度.压力温度灵敏度比约为53K·bar~(-1).它的温度灵敏度只是“熊猫”光纤的1/7.5.
2024/12/12 8:52:34 3.45MB 光纤 纤维光学 光纤传感 fiber
1
本系统是本人刚做的毕业设计,内容比较简单,但是网上这方面的毕业设计参考文档比较少,于是就将自己的漏作传上来了,只是为了给做此题目的同学一些参考,希望能够帮到大家。
摘要:随着数字经济时代的到来和互联网的普及,传统银行300年来赖以生存的基础已经发生了根本的变化。
从发达国家到发展中国家,都普遍重视Web银行系统的使用。
我国改革开放至今,银行业的信息化建设取得了一定的成绩,整体竞争能力和现代化水平都有所提高,但逐步完成的数据大集中并非金融信息化建设的终点,尤其是我国加入WTO之后,国内金融业的竞争将更加激烈、白热化,基于Web的银行系统作为各个银行提高效率的出发点和竞争的焦点,已备受瞩目。
因此,三峡地区基于Web的银行系统的发展前景也十分广阔。
本文主要阐述了研究和设计一个基于Web的银行业务管理系统的整体流程,详细的分析和描述了系统的设计方法,设计流程,开发过程。
通过对开发技术的详细描述,读者可迅速了解该系统开发所使用的开发工具、开发使用的技术、体统的设计思路,进而对系统的整体结构有所了解。
关键词:基于Web银行管理竞争效率 目录摘要 IAbstract II1引言 11.1用户需求分析 11.2本项目要解决的问题 11.3系统目标 12系统开发模式、平台和技术介绍 22.1系统开发模式(Brower/Server模式) 22.2系统开发技术介绍 32.1.1Struts2框架技术 32.2.2Hibernate框架技术 42.3开发工具介绍 52.3.1MyEclipse介绍 52.3.2MySQL5.0介绍 53需求分析 63.1可行性分析 63.2功能需求 63.3性能需求 73.4数据需求 73.5数据字典 74总体设计 94.1总体功能设计 94.2处理流程 104.2.1开户流程 104.2.2销户流程 114.2.3存款流程 114.2.4取款流程 124.2.5挂失流程 124.2.6利率修改流程 135数据库设计 135.1E-R模型 135.2表设计 165.3表结构 175.4表间关系 206系统实现 226.1操作员管理功能实现 226.1.1登录功能实现 226.1.2操作员注册功能实现 246.1.3页面身份验证 277系统试运行结果与评价 288结束语 28致谢 28参考文献 29
2024/12/7 12:03:14 13.43MB 银行 java hibernate strut2
1
南阳陶岔作为南水北调中线工程的渠首闸所在地,掌握其水质变化情况、预防污染事件的发生至关重要。
基于环保部门的水质检测数据,选取pH、溶解氧、高锰酸盐指数、氨氮作为研究指标,通过主成份加权分析模型和BP神经网络模型,对陶岔的水质进行了有效的评价和较高精度的预测。
结果表明,陶岔水质总体较好,可达II级以上,评价准确率为81.25%;
预测的最大误差为4.75%,平均误差0.7%,预测精度较高。
1
如今的屏幕分辨率,小至320px(iPhone),大到2560px甚至更高(大显示器),变化范围极大。
除了使用传统的台式机,用户会越来越多的通过手机、上网本、iPad一类的平板设备来浏览页面。
这种情况下,固定宽度的设计方案将会显得越发不合理。
页面需要有更好的适应性,其布局结构要做到根据不同的设备及屏幕分辨率进行响应调整。
接下来,我们将了解一下怎样通过HTML5和CSS3MediaQueries(媒介查询)相关技术来实现跨设备跨浏览器的响应式Web设计方案首先,我们来看看本篇范例的最终效果演示。
打开该页面,拖拽浏览器边框,将窗口慢慢缩小,同时观察页面结构及元素布局是怎样基于宽度变化而自动响应调整
1
根据提供的文件信息,我们可以将这份“Flux培训资料中文”中的关键知识点整理如下:###Flux培训资料概述####一、模型简介及几何建模本章节主要介绍了如何在Flux软件中创建基本的几何模型,并对不同类型的案例进行了简要说明。
1.**几何建模**:-**仿真目标**:文档中提到了三种不同的仿真场景,分别是静磁场场仿真(Case1)、电流参数化仿真(Case2)和几何参数化仿真(Case3)。
-**几何参数**:为了进行仿真,首先需要定义模型的几何参数。
这些参数用于定义模型的基本形状和尺寸。
-**几何建模步骤**:-**创建对称面**:通过双击symmetry选项来创建对称面,这一步对于简化模型和提高计算效率非常重要。
-**创建几何参数**:通过双击geometricparameter选项,可以定义几何参数,例如长度、宽度等。
-**创建坐标系**:为了准确地定位模型中的各个元素,需要创建合适的坐标系。
这可以通过双击坐标系选项实现。
-**平移变换矢量的创建**:通过双击transformation选项,可以定义平移变换矢量,这对于调整模型的位置非常有用。
-**建立点、线、面、体**:这是几何建模的基础,通过定义点、线、面、体来构建模型的具体形状。
####二、网格剖分这一部分重点讲解了如何将模型分割成更小的单元,即网格剖分,这对于模拟计算至关重要。
-**网格剖分**:在进行电磁场仿真之前,需要将模型划分为更小的网格,以便于软件进行精确的计算。
网格的质量直接影响到仿真的准确性和计算时间。
####三、物理属性本节介绍了如何设定材料的物理属性,这对于模拟结果的准确性至关重要。
-**物理属性设置**:为模型的不同部分指定正确的物理属性,比如磁导率、电导率等,这对于准确模拟电磁行为非常重要。
####四、求解这一环节涉及如何设置求解器参数和执行仿真计算。
-**求解设置**:在这一阶段,需要选择适当的求解器算法,并设定求解参数,如精度要求、迭代次数等。
-**执行仿真**:完成所有准备工作后,启动仿真计算过程,获得模拟结果。
####五、后处理这部分是关于如何分析和可视化仿真结果。
1.**Case1静磁场场仿真**:-这部分针对静磁场场仿真进行了详细的分析和结果展示,可以帮助用户理解静态电磁场的行为。
2.**Case2电流参数化仿真**:-在这个案例中,通过对电流进行参数化处理,研究电流变化对电磁场的影响。
3.**Case3几何参数化仿真**:-这个案例着重探讨了几何参数变化对电磁行为的影响,这对于优化设计具有重要意义。
####六、Flux在国内的技术支持文档还提到了Flux软件在中国的技术支持情况,这对于中国用户来说是非常实用的信息。
这份“Flux培训资料中文”不仅涵盖了Flux软件的基础使用方法,还包括了从几何建模到后处理的完整流程,非常适合初学者入门学习。
通过这份培训资料,学员能够掌握Flux软件的操作技巧,并学会如何利用该软件进行各种电磁场仿真。
2024/11/21 9:24:26 5.67MB Flux
1
星载多普勒测风激光雷达系统(ALADIN)机载演示器(A2D)分别在2007年11月、2008年12月、2009年9月进行了3次飞行任务。
利用获取的海表面反射信号进行海表面反射率特性的研究。
在海表面反射率模型中综合考虑白帽、海面光谱反射和海水体的散射贡献,对355nm海表面反射测量结果和模型进行了对比,测量结果体现了受海面风驱动的海表面反射率的变化特征,以及来自海水体的不可忽视的贡献,并利用较高入射天底角的测量数据对海水体散射贡献进行了估计。
2024/11/19 10:21:53 2.07MB 海洋光学 激光雷达 海表面反 海面风
1
一、单项选择题ABCBDACBDC二、简答题1.链式存储结构。
原因:线性表在处理过程中长度会动态地变化,说明对线性表的操作使以增加和删除数据为主。
而顺序存储结构在增加和删除数据的时候需要整体移动数据的位置,比较复杂,所以宜采用链式存储结构。
2.最少有73个,最多有235个。
3.(1)矩阵中不为0的元素的二分之一。
(2)矩阵中对应该顶点的行或列中非零元素的个数。
(3)矩阵中i对应的行和j对应的列的交点元素是否为0。
为0的话就不存在边,不为0则存在边。
4.①折半插入排序比较次数取决于每一趟的折半次数,而折半次数只取决于元素个数而与序列的初始状态无关。
②当排序序列元素个数较小时。
三、综合题1.交换双向链表中某个指定结点与其直接后继结点的位置。
2.三个。
如下图 6 2 3 4 5 5 1 1 1 1 1 1 1 1 1 1 3.前序:ABDEGCFH后序:DGEBHFCA4.深度优先:ACBDE广度优先:ACEBD四、算法设计题
2024/11/17 4:23:51 141.94MB 考研真题
1
基于K-means聚类算法的图像分割算法的基本原理: 基于K-means聚类算法的图像分割以图像中的像素为数据点,按照指定的簇数进行聚类,然后将每个像素点以其对应的聚类中心替代,重构该图像。
算法步骤:①随机选取K个初始聚类中心;
②计算每个样本到各聚类中心的距离,同时将每个样本归到与其距离最近的聚类中心;
③对每个簇,以所有样本的均值作为该簇新的聚类中心;
④重复第②~③步,直到聚类中心不再变化;
⑤结束,得到K个聚类。
2024/11/16 6:47:58 224KB K-means聚类 图像分割
1
大家都知道,C++MFC中的listcontrol默认是不可编辑的,一些资料也提供了建立CEditlist类的方法,但该方法有一缺陷就是编辑部分显示的大小会变化,为了防止这一情况,编写了该代码。
2024/11/15 17:06:37 2.7MB listcontrol 可编辑 文本 MFC
1
实验一OpenGL+GLUT开发平台搭建5小实验1:开发环境设置5小实验2:控制窗口位置和大小6小实验3:默认的可视化范围6小实验4:自定义可视化范围7小实验5:几何对象变形的原因8小实验6:视口坐标系及视口定义8小实验7:动态调整长宽比例,保证几何对象不变形9实验二动画和交互10小实验1:单缓冲动画技术10小实验2:双缓冲动画技术11小实验3:键盘控制13小实验4:鼠标控制【试着单击鼠标左键或者右键,试着按下鼠标左键后再移动】14实验三几何变换、观察变换、三维对象16小实验1:二维几何变换16小实验2:建模观察(MODELVIEW)矩阵堆栈17小实验3:正平行投影119小实验4:正平行投影219小实验5:正平行投影320小实验6:透射投影121小实验6:透射投影222小实验7:三维对象24实验四光照模型和纹理映射26小实验1:光照模型1----OpenGL简单光照效果的关键步骤。
26小实验2:光照模型2----光源位置的问题28小实验3:光照模型3----光源位置的问题31小实验4:光照模型4----光源位置的问题33小实验5:光照模型5----光源位置的问题35小实验6:光照模型6----光源位置的问题38小实验7:光照模型7----光源位置的动态变化40小实验8:光照模型8----光源位置的动态变化43小实验9:光照模型9---光源位置的动态变化45小实验10:光照模型10---聚光灯效果模拟48小实验11:光照模型11---多光源效果模拟50小实验12:光照效果和雾效果的结合53小实验13:纹理映射初步—掌握OpenGL纹理映射的一般步骤56小实验13:纹理映射—纹理坐标的自动生成(基于参数的曲面映射)59小实验14:纹理映射—纹理坐标的自动生成(基于参考面距离)61
2024/11/15 15:21:27 10.68MB 计算机图形学 OpenGL
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡