这是C#版的数据结构与算法的代码实现,包括:顺序表,单链表,双链表;
顺序栈,链栈;
顺序队列,链队列;
顺序串;
用数组进行特殊矩阵的存储,稀疏矩阵的存储;
顺序存储二叉树,链式存储二叉树,哈夫曼树;
多重链表表示法存储树;
用邻接矩阵处理图的编程问题,用邻接表处理图的编程问题,图的遍历(深度优先,广度优先),Dijkstra最短路径算法;
冒泡排序,快速排序
2022/9/5 9:52:06 675KB 数据结构与算
1
传统的去噪方法往往假设含噪图像的有用信息处在低频区域,而噪声信息处在高频区域,从而基于中值滤波、Wiener滤波、小波变换等方法实现图像去噪,而实际上这种假设并不总是成立的。
基于图像的稀疏表示,近几年来研讨者们提出了基于过完备字典稀疏表示的图像去噪模型,其基本原理是将图像的稀疏表示作为有用信息,将逼近残差视为噪声。
利用K-SVD算法求得基于稀疏和冗余的训练字典,同时针对K-SVD算法仅适合处理小规模数据的局限,通过定义全局最优来强制图像局部块的稀疏性。
文献[28]提出了稀疏性正则化的图像泊松去噪算法,该算法采用log的泊松似然函数作为保真项,用图像在冗余字典下稀疏性约束作为正则项,从而取得更好的去噪效果。
2022/9/4 0:28:02 2.07MB 稀疏 图像
1
CS231A课程项目:深度立体声匹配重新实现GC-Net我主要是重新实现GC-Net。
我实现了两个版本的GC-Net模型:一个带有掩码(损失被掩码),另一个不带掩码。
结果定性结果SceneFlow上的无遮罩版本,原始图像和预测样本:SceneFlow上的带遮罩版本,遮罩的地面真相,遮罩的预测和未遮罩的预测:在KITTI训练集上,要了解真实情况,掩盖的预测和未掩盖的预测:在KITTI测试集中,原始图像和预测样本:定量结果由于KITTI数据集非常稀疏,因而提供的groundtruths是带遮罩的,我首先实现并训练带遮罩的版本。
但是我发现一些预测非常模糊。
(我的口罩有点过多)。
虽然定性结果看起来不错,但是SceneFlow测试集上的定量结果不是很好。
至于KITTI,这不是令人满意的版本,因而我不提交。
并且由于时间和资源的限制,我不进行验证。
我在训
2022/9/3 12:38:33 16.3MB computer-vision JupyterNotebook
1
An^2.5algorithmformaximummatchingsinbipartitegraphs-[英文版,JohnE.Hopcroft&RichardM.Karp]An^2.5algorithmformaximummatchingsinbipartitegraphs-[中文版,JohnE.Hopcroft&RichardM.Karp]Hopcroft-Karp是计算二分图最大婚配的最快算法(根据《算法导论》第二版;
但维基百科说有理论上更快的算法,不过实际效果不如Hopcroft-Karp,因为实际的图多为稀疏的,更快算法对稠密的图效果会更好)。
算法发表于1973年,附带翻译的中文版。
本人邮箱:xionghuaidong@163.com
2022/9/3 9:30:39 684KB 二分图 最大匹配 Hopcroft Karp
1
这里是紧缩感知用构造好的常见测量矩阵来进行二维图像的仿真实验,重构方法用的OMP,稀疏方法用的小波变换。
2017/11/11 17:56:42 1.59MB CS,测量矩阵
1
针对无人机在线航迹规划、实时航迹显示和飞行状态监控实时性不强的问题,提出了一种基于Qt的无人机综合管理系统设计方法。
通过采用三维稀疏A*算法,UDP通信协议,利用多线程技术,实现了无人机飞行航迹规划、飞行状态监控、实时航迹显示功能。
经过实际飞行试验验证,系统功能稳定可靠,通信功能良好,实时性很好,能够圆满地完成任务。
1
针对现有运动恢复结构算法重建模型存在点云稀疏等问题,提出一种利用不同婚配数据进行模型重建的算法。
首先通过对比上下文直方图(CCH)生成婚配数据,利用M估计抽样一致(MSAC)估算图像基础矩阵,进而分解得到平移和旋转矩阵,并根据相机内参计算投影矩阵,然后利用KLT婚配算法更新婚配数据,最后三角化生成三维点云。
该算法婚配精度高,图像基础矩阵易于收敛,通过位移实现特征点婚配,弥补了图像低频区域婚配数据不足的缺陷。
实验结果表明,与现有算法相比,该算法生成的点云更致密;
在真实环境下,该算法可用于物体三维重建。
2019/3/25 20:36:01 664KB 三维重建
1
数据结构算法与应用-C++语言描述目录译者序前言第一部分预备知识第1章C++程序设计11.1引言11.2函数与参数21.2.1传值参数21.2.2模板函数31.2.3引用参数31.2.4常量引用参数41.2.5返回值41.2.6递归函数51.3动态存储分配91.3.1操作符new91.3.2一维数组91.3.3异常处理101.3.4操作符delete101.3.5二维数组101.4类131.4.1类Currency131.4.2使用不同的描述方法181.4.3操作符重载201.4.4引发异常221.4.5友元和保护类成员231.4.6增加#ifndef,#define和#endif语句241.5测试与调试241.5.1什么是测试241.5.2设计测试数据261.5.3调试281.6参考及推荐读物29第2章程序功能302.1引言302.2空间复杂性312.2.1空间复杂性的组成312.2.2举例352.3时间复杂性372.3.1时间复杂性的组成372.3.2操作计数372.3.3执行步数442.4渐进符号(O、健?、o)552.4.1大写O符号562.4.2椒?582.4.3符号592.4.4小写o符号602.4.5特性602.4.6复杂性分析举例612.5实际复杂性662.6功能测量682.6.1选择实例的大小692.6.2设计测试数据692.6.3进行实验692.7参考及推荐读物74第二部分数据结构第3章数据描述753.1引言753.2线性表763.3公式化描述773.3.1基本概念773.3.2异常类NoMem793.3.3操作793.3.4评价833.4链表描述863.4.1类ChainNode和Chain863.4.2操作883.4.3扩充类Chain913.4.4链表遍历器类923.4.5循环链表933.4.6与公式化描述方法的比较943.4.7双向链表953.4.8小结963.5间接寻址993.5.1基本概念993.5.2操作1003.6模拟指针1023.6.1SimSpace的操作1033.6.2采用模拟指针的链表1063.7描述方法的比较1103.8应用1113.8.1箱子排序1113.8.2基数排序1163.8.3等价类1173.8.4凸包1223.9参考及推荐读物127第4章数组和矩阵1284.1数组1284.1.1抽象数据类型1284.1.2C++数组1294.1.3行主映射和列主映射1294.1.4类Array1D1314.1.5类Array2D1334.2矩阵1374.2.1定义和操作1374.2.2类Matrix1384.3特殊矩阵1414.3.1定义和应用1414.3.2对角矩阵1434.3.3三对角矩阵1444.3.4三角矩阵1454.3.5对称矩阵1464.4稀疏矩阵1494.4.1基本概念1494.4.2数组描述1494.4.3链表描述154第5章堆栈1615.1抽象数据类型1615.2派生类和继承1625.3公式化描述1635.3.1Stack的效率1645.3.2自定义Stack1645.4链表描述1665.5应用1695.5.1括号匹配1695.5.2汉诺塔1705.5.3火车车厢重排1725.5.4开关盒布线1765.5.5离线等价类问题1785.5.6迷宫老鼠1805.6参考及推荐读物188第6章队列1896.1抽象数据类型1896.2公式化描述1906.3链表描述1946.4应用1976.4.1火车车厢重排1976.4.2电路布线2016.4.3识别图元2046.4.4工厂仿真2066.5参考及推荐读物217第7章跳表和散列2187.1字典2187.2线性表描述2197.3跳表描述2227.3.1理想情况2227.3.2插入和删除2237.3.3级的分配2247.3.4类SkipNode2247.3.5类SkipList2257.3.6复杂性2297.4散列表描述2297.4.1理想散列2297.4.2线性开型寻址散列2307.4.3链表散列2347.5应用——文本压缩2387.5.1LZW压缩2397.5.2LZW压缩的实现2397.5.3LZW解压缩2437.5.4LZW解压缩的实现2437.6参考及推荐读物247第8章二叉树和其他树2488.1树2488.2二叉树2518.3二叉树的特性2528.4二叉树描述2538.4.1公式化描述2538.4.2链表描述2548.5二叉树常用操作2568.6二叉树遍历2568.7抽象数据类型BinaryTree2598.8类BinaryTree2608.9抽象数据类型及类的扩充2638.9.1输出2638.9.2删除2648.9.3计算高度2648.9.4统计节点数2658.10应用2658.10.1设置信号放大器2658.10.2在线等价类2688.11参考及推荐读物275第9章优先队列2769.1引言2769.2线性表2779.3堆2789.3.1定义2789.3.2最大堆的插入2799.3.3最大堆的删除2799.3.4最大堆的初始化2809.3.5类MaxHeap2819.4左高树2859.4.1高度与宽度优先的最大及最小左高树2859.4.2最大HBLT的插入2879.4.3最大HBLT的删除2879.4.4合并两棵最大HBLT2879.4.5初始化最大HBLT2899.4.6类MaxHBLT2899.5应用2939.5.1堆排序2939.5.2机器调度2949.5.3霍夫曼编码2979.6参考及推荐读物302第10章竞?30310.1引言30310.2抽象数据类型WinnerTree30610.3类WinnerTree30710.3.1定义30710.3.2类定义30710.3.3构造函数、析构函数及Winner函数30810.3.4初始化赢者树30810.3.5重新组织比赛31010.4输者树31110.5应用31210.5.1用最先匹配法求解箱子装载问题31210.5.2用相邻匹配法求解箱子装载问题316第11章搜索树31911.1二叉搜索树32011.1.1基本概念32011.1.2抽象数据类型BSTree和IndexedBSTree32111.1.3类BSTree32211.1.4搜索32211.1.5插入32311.1.6删除32411.1.7类DBSTree32611.1.8二叉搜索树的高度32711.2AVL树32811.2.1基本概念32811.2.2AVL树的高度32811.2.3AVL树的描述32911.2.4AVL搜索树的搜索32911.2.5AVL搜索树的插入32911.2.6AVL搜索树的删除33211.3红-黑树33411.3.1基本概念33411.3.2红-黑树的描述33611.3.3红-黑树的搜索33611.3.4红-黑树的插入33611.3.5红-黑树的删除33911.3.6实现细节的考虑及复杂性分析34311.4B-树34411.4.1索引顺序访问方法34411.4.2m叉搜索树34511.4.3m序B-树34611.4.4B-树的高度34711.4.5B-树的搜索34811.4.6B-树的插入34811.4.7B-树的删除35011.4.8节点结构35311.5应用35411.5.1直方图35411.5.2用最优匹配法求解箱子装载问题35711.5.3交叉分布35911.6参考及推荐读物363第12章图36512.1基本概念36512.2应用36612.3特性36812.4抽象数据类型Graph和Digraph37012.5无向图和有向图的描述37112.5.1邻接矩阵37112.5.2邻接压缩表37312.5.3邻接链表37412.6网络描述37512.7类定义37612.7.1不同的类37612.7.2邻接矩阵类37712.7.3扩充Chain类38012.7.4类LinkedBase38112.7.5链接类38212.8图的遍历38612.8.1基本概念38612.8.2邻接矩阵的遍历函数38712.8.3邻接链表的遍历函数38812.9语言特性38912.9.1虚函数和多态性38912.9.2纯虚函数和抽象类39112.9.3虚基类39112.9.4抽象类和抽象数据类型39312.10图的搜索算法39412.10.1宽度优先搜索39412.10.2类Network39512.10.3BFS的实现39512.10.4BFS的复杂性分析39612.10.5深度优先搜索39712.11应用39912.11.1寻找路径39912.11.2连通图及其构件40012.11.3生成树402第三部分算法设计方法第13章贪婪算法40513.1最优化问题40513.2算法思想40613.3应用40913.3.1货箱装船40913.3.20/1背包问题41013.3.3拓扑排序41213.3.4二分覆盖41513.3.5单源最短路径42113.3.6最小耗费生成树42413.4参考及推荐读物433第14章分而治之算法43414.1算法思想43414.2应用44014.2.1残缺棋盘44014.2.2归并排序44314.2.3快速排序44714.2.4选择45214.2.5距离最近的点对45414.3解递归方程46214.4复杂性的下限46314.4.1最小最大问题的下限46414.4.2排序算法的下限465第15章动态规划46715.1算法思想46715.2应用46915.2.10/1背包问题46915.2.2图像压缩47115.2.3矩阵乘法链47615.2.4最短路径48015.2.5网络的无交叉子集48315.2.6元件折叠48615.3参考及推荐读物491第16章回溯49216.1算法思想49216.2应用49616.2.1货箱装船49616.2.20/1背包问题50316.2.3最大完备子图50616.2.4旅行商问题50816.2.5电路板排列510第17章分枝定界51617.1算法思想51617.2应用51917.2.1货箱装船51917.2.20/1背包问题52617.2.3最大完备子图52817.2.4旅行商问题52917.2.5电路板排列532
2019/2/11 7:56:36 11.23MB 数据结构
1
matlab马科维茨代码QMD算法这是用于商最小度算法(QMD)的健壮Matlab代码。
在数值分析中,最小度算法是用于在应用Cholesky分解之前对对称稀疏矩阵的行和列进行置换的算法,以减少Cholesky因子中的非零数。
最小度算法经常用在有限元方法中,其中只能根据网格的拓扑而不是偏微分方程中的系数来进行节点的重新排序,从而在使用相同的网格来节省效率时各种系数值。
QMD算法的上限严格为O(n2m)。
语境找到最佳排序的问题是一个NP完全问题,因此很棘手,因此改用启发式方法。
最小度算法是从Markowitz于1959年首次提出的用于解决非对称线性规划问题的方法中衍生出来的,下面将对此进行粗略地描述。
在高斯消除的每个步骤中,都执行行和列置换,以使枢轴行和列中偏离对角非零的数量最小。
Tinow和Walker在1967年描述了一种对称方式的Markowitz方法,Rose后来又推导了该图的图形理论方式,其中仅模拟了因式分解,这被称为最小度算法。
当存在相同程度的选择时,这种算法的一个关键方面是突破打破策略。
输入和输出perm:theoutputpermutatio
2020/11/14 18:43:03 19KB 系统开源
1
十字链表存储稀疏矩阵算法,完成两个矩阵的乘法运算
2018/11/21 14:50:04 36KB 十字链表 稀疏矩阵 乘法
1
共 225 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡