浮游植物吸收系数是海洋光学研究中重要的参数。
该参数随着海区以及时间不同呈现较大的差异。
为了更好地表征该参数,探讨了聚类法在浮游植物吸收系数非线性模型中的应用,修正了非线性模型中浮游植物吸收特性随区域性变化带来的误差。
通过计算不同波段的反射率二阶导光谱和吸收系数光谱的自适应指数(ARI)发现555~681nm波段的反射率二阶导光谱可以较好地表征吸收系数光谱的光谱特征。
因此,以555~681nm的反射率二阶导光谱为聚类分析样本对数组进行聚类分析。
通过实测数据对聚类法进行了验证,结果证明该方法可以较好地表征浮游植物吸收系数(均方根误差大于0.79)。
该研究是应用光学遥感方法提取浮游植物信息及海水光学特征必不可少的基础研究。
2023/9/1 23:37:07 4.39MB 遥感 浮游植物 吸收系数 remote
1
真题817光学全真
2023/8/26 20:12:44 5.26MB 中科院817光学 考研真题
1
辐射定标是光学遥感信息定量化的关键技术之一。
随着高分辨光学遥感器定量化应用的发展,在轨绝对辐射定标精度的要求也越来越高。
提出了一种基于多灰阶靶标的在轨定标方法,采用实际测量的漫射辐照度与总辐照度比来代替辐射传输计算的气溶胶散射,同时布设高反射率靶标以提高辐射定标精度。
初步试验结果表明,基于多灰阶靶标的高分辨率光学卫星传感器在轨绝对辐射定标方法,对假定的理论模型依赖较少,能够实现全动态范围的高精度定标,不确定度优于4%,而且满足复杂环境条件的应用要求。
2023/8/25 20:43:25 1.5MB 遥感 多灰阶靶 辐射定标 漫射辐照
1
斯坦福课件,少有的正视火热VR、AR的硬件问题的分析。
2023/8/21 17:47:11 10.29MB VR AR 图像处理 VAC
1
用分子束外延(MBE)技术,在GaAa(100)衬底上生长了厚度从0.045μm到1.4μm的ZnSe薄膜。
通过室温拉曼光谱的测量对ZnSe薄膜纵光学声子(Longitudinal-opticalphonon)的谱形进行了分析。
用拉曼散射的空间相关模型定量分析了一级拉曼散射的空间相关长度与晶体质量之间的关系,结果表明ZnSe外延层的晶体质量随着外延层厚度的减薄是渐渐退化的,这是由于界面失配位错引入外延层所致,理论分析与实验结果相吻合。
2023/8/21 4:12:03 298KB 光学材料 ZnSe 拉曼光谱
1
光学薄膜是现代光学和光电系统重要的组成部分,在光通信、光学显示、激光加工、激光核聚变等高科技及产业领域已经成为核心元器件,其技术突破常常成为现代光学及光电系统加速发展的主因。
光学薄膜的技术性能和可靠性,直接影响到应用系统的性能、可靠性及成本。
如图1是光通讯技术中使用窄带滤光片调制不同的通讯通道示意图[1]。
图2是激光核聚变系统中大量使用到的薄膜元器件[2]。
随着行业的不断发展,精密光学系统对光学薄膜的光谱控制能力和精度要求越来越高,而消费电子对光学薄膜器件的需求更强调超大的量产规模和普通大众的易用和舒适性。
2023/8/20 20:22:26 1.67MB 论文
1
能带及态密度及光学性质.doc
2023/8/18 5:04:38 437KB 能带 态密度
1
本文采用多路驱动法研制出矩阵式液晶调制器,并可在IBM/XT计算机控制下产生图像。
利用此调制器建立了一种新的光学逻辑运算器,并实现了16种布尔逻辑运算及光学半加运算。
这种偏振编码、紧凑的逻辑运算器是实现光计算的基本运算单元。
2023/8/14 8:55:31 1.88MB 液晶调制 偏振编码 光学逻辑
1
本程序是基于MATLAB的光学衍射的程序,已经修改过了,可以用的,
2023/8/10 2:52:26 578B 光学衍射
1
本文提出用同轴不共焦抛物面——双曲面掠射系统,代替现在流行的同轴共焦系统。
利用不共焦引入预定量的球差,可以抵消一部分轴外球差。
与Wolter-I型(象面离焦)相比较,在0~15弧分视场内象质有显著改善,在15~20弧分视场象质相同。
指出用MTF评价,可以比用线扩散函数或均方根弥散圆(rms)更准确地评价这类系统的象质。
本文还讨论了光阑设置及望远镜口径尺寸公差计算方法。
把口径误差表示为焦点与端面的相对位移,可以定量计算口径误差对象质的影响。
计算结果与国外已发表的数据基本符合。
镜面口径差的公差与圆度公差比口径公差的要求严格一个数量级以上,抛物面比双曲面的口径差的公差严格4~5倍。
2023/8/7 17:21:25 6.57MB 论文
1
共 411 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡