2.4.计算器的实现
2023/8/14 6:28:32 33.29MB Qt c++
1
json-lib-2.4-jdk15.jar|commons-beanutils-1.8.3.jar|commons-collections-3.2.1.jar|commons-lang-2.6.jar|commons-logging-1.1.1.jar|ezmorph-1.0.6.jar|简单json-lib示例工程,真心分享,希望能够帮到你!
1
N76E003为新唐高速1T8051单片机系列产品,支持2.4V至5.5V宽工作电压,超低功耗,可完美替代STM8L,本代码为全套DEMO源码,可以直接运行,也可移植,可快速入门此mcu开发。
2023/8/10 10:39:15 5.59MB 超低功耗 N76E003 DEMO 直接KEIL运行
1
《基于fpga的嵌入式图像处理系统设计》详细介绍了fpga(fieldprogrammablegatearray,现场可编程门阵列)这种新型可编程电子器件的特点,对fpga的各种编程语言的发展历程进行了回顾,并针对嵌入式图像处理系统的特点和应用背景,详细介绍了如何利用fpga的硬件并行性特点研制开发高性能嵌入式图像处理系统。
作者还结合自己的经验,介绍了研制开发基于fpga的嵌入式图像处理系统所需要的正确思路以及许多实用性技巧,并给出了许多图像处理算法在fpga上的具体实现方法以及多个基于fpga实现嵌入式图像处理系统的应用实例。
  《基于fpga的嵌入式图像处理系统设计》对fpga技术的初学者以及已经具有比较丰富的设计经验的读者来说都有很好的参考价值,也将为从事基于fpga的嵌入式系统开发和应用的软硬件工程师和科研人员提供一本比较系统、全面的学习材料。
目录1图像处理1.1基本定义1.2图像形成1.3图像处理操作1.4应用实例1.5实时图像处理1.6嵌入式图像处理1.7串行处理1.8并行性1.9硬件图像处理系统2现场可编程门阵列2.1可编程逻辑器件2.1.1fpga与asic2.2fpga和图像处理2.3fpga的内部2.3.1逻辑器件2.3.2互连2.3.3输入和输出2.3.4时钟2.3.5配置2.3.6功耗2.4fpga产品系列及其特点2.4.1xilinx2.4.2altera2.4.3lattice半导体公司2.4.4achronix2.4.5siliconblue2.4.6tabula2.4.7actel2.4.8atmel2.4.9quicklogic2.4.10mathstar2.4.11cypress2.5选择fpga或开发板3编程语言3.1硬件描述语言3.2基于软件的语言3.2.1结构化方法3.2.2扩展语言3.2.3本地编译技术3.3visual语言3.3.1行为式描述3.3.2数据流3.3.3混合型3.4小结4设计流程4.1问题描述4.2算法开发4.2.1算法开发过程4.2.2算法结构4.2.3fpga开发问题4.3结构选择4.3.1系统级结构4.3.2计算结构4.3.3硬件和软件的划分4.4系统实现4.4.1映射到fpga资源4.4.2算法映射问题4.4.3设计流程4.5为调整和调试进行设计4.5.1算法调整4.5.2系统调试5映射技术5.1时序约束5.1.1低级流水线5.1.2处理同步5.1.3多时钟域5.2存储器带宽约束5.2.1存储器架构5.2.2高速缓存5.2.3行缓冲5.2.4其他存储器结构5.3资源约束5.3.1资源复用5.3.2资源控制器5.3.3重配置性5.4计算技术5.4.1数字系统5.4.2查找表5.4.3cordic5.4.4近似5.4.5其他方法5.5小结6点操作6.1单幅图像上的点操作6.1.1对比度和亮度调节6.1.2全局阈值化和等高线阈值化6.1.3查找表实现6.2多幅图像上的点操作6.2.1图像均值6.2.2图像相减6.2.3图像比对6.2.4亮度缩放6.2.5图像掩模6.3彩色图像处理6.3.1伪彩色6.3.2色彩空间转换6.3.3颜色阈值化6.3.4颜色校正6.3.5颜色增强6.4小结7直方图操作7.1灰度级直方图7.1.1数据汇集7.1.2直方图均衡化7.1.3自动曝光7.1.4阈值选择7.1.5直方图相似性7.2多维直方图7.2.1三角阵列7.2.2多维统计信息7.2.3颜色分割7.2.4颜色索引7.2.5纹理分析8局部滤波器8.1缓存8.2线性滤波器8.2.1噪声平滑8.2.2边缘检测8.2.3边缘增强8.2.4线性滤波器技术8.3非线性滤波器8.3.1边缘方向8.3.2非极大值抑制8.3.3零交点检测8.4排序滤波器8.4.1排序滤波器的排序网络8.4.2自适应直方图均衡化8.5颜色滤波器8.6形态学滤波器8.6.1二值图像的形态学滤波8.6.2灰度图像形态学8.6.3颜色形态学滤波8.7自适应阈值分割8.7.1误差扩散8.8小结9几何变换9.1前向映射9.1.1可分离映射9.2逆向映射9.3插值
2023/8/9 21:49:08 53.81MB FPGA 嵌入式 图像处理
1
vlc-2.2.4-win32.7z,vlc-2.2.4-win32.7zvlc-2.2.4-win32.7z
2023/8/9 0:50:04 26.97MB VLC
1
TheQiWirelessPowerTransferSystemPowerClass0SpecificationParts1and2:InterfaceDefinitionsVersion1.2.4FinalDraftFebruary2018
2023/8/8 13:25:40 3.77MB Qi Wirele V1.2 part1&
1
本书由TI公司的两个文献编译而成,编号为SPRU513的文献介绍了如何使用汇编语言工具:汇编器、归档器、目标代码链接器、交叉引用列表程序、绝地地址列表程序、十六进制转换应用程序。
编号为SPRU430B的文献中的一部分介绍了C28x汇编语言指令集。
由于这两部分内容紧密相关,故将其放在一起,以便读者查阅。
本书主要针对从事TI公司2000系列DSP开发应用的工程技术人员,也可以作为在校研究生的参考用书。
目录第1章软件开发工具1.1软件开发工具概况1.2软件开发工具介绍第2章通用目标文件格式介绍2.1段2.2汇编器如何处理段2.3链接器如何处理段2.4重定位运行中的重定位2.5装载程序2.6COFF文件中的符号第3章汇编器3.1汇编器功能3.2在软件开发过程中汇编器的作用3.3运行汇编器
2023/8/5 23:56:49 32.89MB TMS320C28X
1
【很实用,很安全的开关电源,里面有详细的说明,自己可以动手做做。
可以用于5V-2.4A直流电源,很不错,大家过来看看吧,相信你们会喜欢的。
2023/8/4 2:48:14 9.75MB 开关电源 5V-2.4A
1
第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
电视原理.第一章黑白电视原理1.1光和视觉特性1.2黑白电视系统组成原理1.3电视扫描与同步1.4黑白全电视信号1.5电视图象的基本参量第二章色度学与彩色电视 2.1光与颜色2.2颜色的计量系统2.3电视中彩色的分解与重现2.4电视RGB计色制与彩色正确重现第三章彩色电视制式 3.1概述3.2兼容制彩色电视基础3.3NTSC制3.4PAL制3.5SECAM制简介第四章电视摄像与发送技术 4.1广播电视系统的组成4.2电视摄像机4.3摄象器件4.4电视图像信号的处理4.5同步信号的形成4.6PAL全电视信号的形成4.7电视信号的发送第五章电视接收技术5.1电视接收技术概论5.2高频调谐器5.3图象通道电路5.4解码电路5.5同步分离电路5.6扫描电路5.7显象管及其附属电路第六章电视新技术概论6.1卫星电视广播6.2数字电视6.3高清晰度电视(HDTV)6.4共用天线电视(CATV)系统6.5电视多工广播6.6立体电视
2023/8/1 21:01:11 16.69MB 模拟、多媒体、硬件、电视
1
共 360 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡