Java语言编写的简单商品信息管理系统,带登陆密码,在控制台显示运行结果,无数据库,代码实现和功能都非常基础。
附赠课程设计报告内容。
1.1课程设计目的本次课程设计旨在加深对本学期课程所学知识的理解,复习和巩固java语言的相关知识以及语法规则,加强了对java语言的理解,提升了自己的实际动手操作水平。
使我们更进一步了解了面向对象语言编程的基本思想和风格特点。
学会编制结构清晰、风格良好适当的java语言程序,从而具备解决综合性实际问题的能力1.2课程设计内容和要求1、系统需实现基础功能:增、删、改、查。
2、学生可自行添加完善功能。
3、界面美观得体,(1)登陆界面醒目,标题清晰。
(2)无乱码,错别字。
(3)使用myeclipse/Eclipse编写程序4、程序编码时,必须严格遵守java程序标识符的一般约定,并要加适量的注释。
5、系统基本能运行,程序结构合理层次清晰6、各种技术的综合应用7、在myeclipse/Eclipse中的控制台窗口中显示运行结果即可。
2024/2/2 22:03:14 516KB java课设 商品信息 纯Java代
1
优秀毕业设计论文自己写的下载了就知道我花了多少汗水了第1章概述 1 1.1课题的背景及意义 1 1.2课题分析 1 1.3国内外发展状况 2 1.3.1国内方面 2 1.3.2国外方面 2第2章系统实现主要技术 3 2.1技术方案选取 3 2.1.1开发语言 3 2.1.2开发模式选择 4 2.2相关语言及开发工具介绍 5 2.2.1JSP技术简介 5 2.2.2MyEclipse简介 6 2.2.3Tomcat简介 6 2.2.4MicrosoftSQLServer2005简介 7第3章系统概述 8 3.1运行环境 8 3.1.1软件运行环境 8 3.2系统的可行性研究 8 3.2.1技术可行性 8 3.2.2社会可行性 9 3.2.3经济可行性 9 3.3系统需求分析 9 3.3.1用户需求分析 9 3.3.2性能需求分析 10 3.3.3产品质量需求分析 10 3.3.4系统设计目标分析 11 3.4系统体系结构分析 11 3.4.1B/S结构与C/S结构 11 3.4.2B/S与C/S的优越性 12第4章系统总体设计 14 4.1系统设计 14 4.1.1逻辑结构分析 14 4.1.2功能模块划分 14 4.1.3系统流程概述 15 4.1.4数据流图分析 18 4.1.5系统用例 19 4.2数据库设计 20 4.2.1数据库的需求分析 20 4.2.2数据库表设计 20 4.2.3E-R模型 22 4.3MVC模式 25 4.3.1视图层 25 4.3.2模型层 26 4.3.3模型层 26第5章系统详细设计与实现 28 5.1前台开发 28 5.1.1首页设计 28 5.1.2用户登录 29 5.1.3用户注册 29 5.1.4用户订餐 30 5.1.5购物车 31 5.1.6订单 31 5.1.7在线聊天 32 5.1.8在线留言 33 5.2后台开发 33 5.2.1管理员登录 33 5.2.2管理员功能 34 5.2.3商品显示 34 5.2.4添加商品 35 5.2.5销售统计 36 5.2.6管理用户 37 5.2.7订单管理 37 5.3部分核心代码 38 5.3.1乱码处理方法 38 5.3.2时间格式处理方法 38 5.3.3数据库配置信息 39 5.3.4购物车 39 5.3.5分页 40第6章系统测试与维护 42 6.1系统测试 42 6.1.1系统测试的目的 42 6.1.2系统测试的方法 42 6.1.3网上订餐管理系统的测试 42 6.2系统维护 43结论 44参考文献 45致谢 46
1
本例程提供基于WPS表格进行读写操作的类,并VC6.0下编译通过,更新至V1.2
2024/2/2 2:28:51 31KB WPS VC++ ET
1
本教程适用初学者快速掌握SystemVIew工具,包含以下几章:第1章SystemView的功能与使用简介1.1SystemView简介1.2SystemView的用户环境1.2.1设计窗口1.2.2图标库1.2.3图标定义1.3系统定时1.4基本使用1.4.1基本系统的搭建1.4.2分析窗口1.4.3接收计算器1.4.4全局参数连接1.4.5可变参数设计1.4.6与外部文件的接1.4.7动态探针功能1.4.8自动程序生成(APG)功能第2章用SystemView实现滤波器设计2.1各种类型的滤波器设计2.1.1FIR滤波器设计2.1.2Analog模拟滤波器设计2.1.3Communication通信滤波器设计2.1.4用户自定义型滤波器的设计2.1.5直接输入系数设计2.2下载到硬件级第3章SystemView的图标库3.1基本库3.1.1信号源库3.1.2子系统库3.1.3加法器图标3.1.4子系统I/O图标3.1.5算子库3.1.6函数库3.1.7乘法器库3.1.8观察窗库3.2专业库3.2.1通信库3.2.2DSP库3.2.333扩展库3.3.1CDMA库3.3.2数字视频广播DVB库3.3.3自适应滤波器库第4章SystemView调用其它工具4.1用户代码库的调用4.2与仿真工具Matlab的接口
2024/2/1 22:19:53 3.23MB SystemVIew 通信系统仿真
1
*.las文件格式说明(1.0/1.1/1.2/1.3/1.4)
2024/1/31 2:21:39 556KB las1.0 las1.1 las1.2 las1.3
1
DisplayPort(DP)是目前正在兴起的音视频传输接口,本文档是目前最新的1.2a版本官方标准,支持MST传输技术。
2024/1/30 14:39:04 22MB DisplayPort DP,1.2a
1
“脉冲袋式除尘器方案设计系统”是一款针对大型脉冲袋式除尘器设计而开发的软件系统,该系统能实现各种规格和要求的大型脉冲袋式除尘器的总体方案设计,具有准确、快速、高效、智能化的特点,能在方案设计完毕后输出Word技术参数表和设备价格表,还能输出设计方案图。
功能1适应多种需要的脉冲袋式除尘器总体方案设计方式;2多种规格的脉冲袋式除尘器方案总体设计;3智能化的高效设计方式.
2024/1/29 13:34:36 5.56MB 除尘器 方案 设计
1
1、输入如下正确的常量说明串:constcount=10,sum=81.5,char1=‘f’,max=169,str1=“h*542..4S!AAsj”,char2=‘@’,str2=“aa!+h”;
输出:count(integer,10)sum(float,81.5)char1(char,‘f’)max(integer,169)str1(string,“h*542..4S!AAsj”)char2(char,‘@’)str2(string,“aa!+h”)int_num=2;char_num=2;string_num=2;float_num=1.2、输入类似如下的保留字const错误的常量说明串:Aconsttcount=10,sum=81.5,char1=‘f’;输出类似下面的错误提示信息:Itisnotaconstantdeclarationstatement!Pleaseinputastringagain!3、输入类似如下含常量名或常量值错误的常量说明串:constcount=10,12sum=81.5,char1=‘ff’,max=0016;
输出类似下面的错误提示信息:count(integer,10)12sum(Wrong!Itisnotaidentifier!)char1(Wrong!Therearemorethanonecharin‘’.)max(Wrong!Theintegercan’tbestartedwith‘0’.)int_num=1;char_num=0;string_num=0;float_num=0.
2024/1/27 0:49:23 3KB 编译原理
1
DifferentialEquationsandLinearAlgebra(4th)英文无水印原版pdf第4版pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开本资源转载自网络,如有侵权,请联系上传者或csdn删除查看此书详细信息请在美国亚马逊官网搜索此书EditorialDirector,Mathematics:ChristinehoagEditor-in-Chief:DeirdreLynchAcquisitionsEditor:WilliamHoffmaProjectTeamLead:ChristinaleProjectmanager:LaurenMorseEditorialAssistant:JenniferSnyderProgramTeamLead:KarenwernholmProgramManagerDaniellesimbajonCoverandillustrationDesign:StudioMontageProgramDesignLead:BethPaquinProductMarketingManagerClaireKozarProductMarketingCoordiator:BrookesmithFieldMarketingManager:EvanStCyrSeniorAuthorSupport/TechnologySpecialist:JoevetereSeniorProcurementSpecialist:CarolMelvilleInteriorDesign,ProductionManagement,AnswerArt,andCompositioneNergizerAptara,LtdCoverImage:LighttrailsonmodernbuildingbackgroundinShanghai,China-hxdyl/123RFCopyrightO2017,2011,2005PearsonEducation,Inc.oritsaffiliates.AllRightsReserved.PrintedintheUnitedStatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopyingrecording,orotherwise.Forinformationregardingpermissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissionsdepartmentpleasevisitwww.pearsoned.com/permissions/PEARSONandALWAYSLEARNINGareexclusivetrademarksintheU.s.and/orothercountriesownedbyPearsonEducation,Inc.oritsaffiliatesUnlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowandanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeordescriptivepurposesonly.SuchofsuchmarksoranyrelationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesordistributortreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonsproductsbytheownersLibraryofCongressCataloging-in-PublicationDataGoode.StephenwDifferentialequationsandlinearalgebra/StephenW.GoodeandScottA.AnninCaliforniastateUniversity,Fullerton.-4theditionpagescmIncludesindexISBN978-0-321-96467-0—ISBN0-32196467-51.Differentialequations.2.Algebras,Linear.I.Annin,Scott.II.TitleQA371.G6442015515’.35-dc23201400601512345678910V031-1918171615PEARSONISBN10:0-321-96467-5www.pearsonhighered.comISBN13:978-0-321-96467-0ContentsPrefacevii1First-OrderDifferentialEquations1.1DifferentialEquationsEverywhere11.2BasicIdeasandTerminology131.3TheGeometryofFirst-OrderDifferentialEquations231.4SeparableDifferentialEquations341.5SomeSimplePopulationModels451.6First-OrderLinearDifferentialEquations531.7ModelingProblemsUsingFirst-OrderLinearDifferentialEquations61.8Changeofvariables711.9ExactDifferentialEquations821.10Numericalsolutiontofirst-OrderDifferentialEquations931.11SomeHigher-OrderDifferentialEquations1011.12ChapterReview1062MatricesandSystemsofLinearEquations1142.1Matrices:Definitionsandnotation1152.2MatrixAlgebra1222.3TerminologyforSystemsofLinearEquations13824R。
w-EchelonMatricesandElementaryR。
wOperations1462.5Gaussianelimination1562.6TheInverseofasquarematrix1682.7ElementaryMatricesandtheLUFactorization1792.8TheInvertiblematrixtheoremi1882.9ChapterReview1903Determinants1963.1TheDefinitionofthedeterminant1963.2PropertiesofDeterminants2093.3CofactorExpansions2223.4SummaryofDeterminants2353.5ChapterReview242iyContents4VectorSpaces2464.1Vectorsinrn2484.2DefinitionofaVectorSpace2524.3Subspaces2634.4SpanningSets2744.5LinearDependenceandLinearIndependence2844.6Basesanddimension2984.7Changeofbasis3114.8RowSpaceandColumnSpace3194.9TheRank-NullityTheorem3254.10InvertibleMatrixTheoremll3314.11ChapterReview3325InnerProductSpaces3395.1DefinitionofanInnerproductspace3405.2OrthogonalSetsofvectorsandorthogonalProjections3525.3Thegram-Schmidtprocess3625.4LeastSquaresApproximation3665.5ChapterReview3766LinearTransformations3796.1Definitionofalineartransformation3806.2Transformationsofr23916.3TheKernelandrangeofalineartransformation3976.4AdditionalPropertiesofLinearTransformations4076.5Thematrixofalineartransformation4196.6Chaiterreview4287EigenvaluesandEigenvectors4337.1TheEigenvalue/EigenvectorProblem4347.2GeneralResultsforEigenvaluesandEigenvectors4467.3Diagonalization4547.4AnIntroductiontotheMatrixExponentialFunction4627.5OrthogonalDiagonalizationandQuadraticforms4667.6Jordancanonicalforms4757.7Chapterreview4888LinearDifferentialEquationsofOrdern4938.1GeneralTheoryforLinearDifferentialEquations4958.2ConstantCoefficientHomogeneousLinearDifferentialEquations5058.3ThemethodofundeterminedcoefficientsAnnihilators5158.4Complex-ValuedTrialSolutions5268.5OscillationsofaMechanicalSystem529Contentsv8.6RLCCircuits5428.7TheVariationofparametersmethod5478.8ADifferentialEquationwithNonconstantCoefficients5578.9Reductionoforder5688.10ChapterReview5739SystemsofDifferentialEquations5809.1First-OrderLinearSystems5829.2VectorFormulation5889.3GeneralResultsforfirst-OrderLinearDifferentialystems5939.4VectorDifferentialEquations:NondefectiveCoefficientMatrix5999.5VectorDifferentialEquations:DefectiveCoefficientMatrix6089.6Variation-of-ParametersforLinearSystems6209.7SomeApplicationsofLinearSystemsofDifferentialEquations6259.8MatrixExponentialFunctionandSystemsofDifferentialEquations6359.9ThePhasePlaneforLinearAutonomousSystems6439.10NonlinearSystems6559.11ChapterReview66310TheLaplaceTransformandSomeElementaryApplications67010.1DefinitionoftheLaplaceTransform67010.2TheExistenceofthelaplacetransformandtheInversetransform67610.3PeriodicFunctionsandtheLaplacetransform68210.4ThetransformofderivativesandsolutionofInitial-Valueproblems68510.5TheFirstShiftingTheorem69010.6TheUnitStepFunction69510.7TheSecondShiftingTheorem69910.8ImpulsiveDrivingTerms:TheDiracDeltaFunction70610.9TheConvolutionIntegral71110.10ChapterReview71711SeriesSolutionstoLinearDifferentiaEquations72211.1AReviewofpowerseries72311.2SeriesSolutionsaboutanOrdinaryPoint73111.3TheLegendreEquation74111.4SeriesSolutionsaboutaRegularSingularPoint75011.5Frobeniustheory75911.6Bessel'sEquationofOrderp77311.7Chapterreview785ViContentsAReviewofComplexNumbers791BReviewofPartialFractions797CReviewofIntegrationTechniques804DLinearlyIndependentSolutionstox2y+xp(x)y+g(x)y=0811Answerstoodd-NumberedExercises814Index849S.W.GoodededicatesthisbooktomeganandtobiS.A.annindedicatesthisbooktoarthurandJuliannthebestparentsanyonecouldaskforPretraceLikethefirstthreeeditionsofDifferentialEquationsandLinearalgebra,thisfourtheditionisintendedforasophomorelevelcoursethatcoversmaterialinbothdifferentialequationsandlinearalgebra.Inwritingthistextwehaveendeavoredtodevelopthestudentsappreciationforthepowerofthegeneralvectorspaceframeworkinformulatingandsolvinglinearproblems.Thematerialisaccessibletoscienceandengineeringstu-dentswhohavecompletedthreesemestersofcalculusandwhobringthematurityofthatsuccesswiththemtothiscourseThistextiswrittenaswewouldnaturallyteachblendinganabundanceofexamplesandillustrations,butnotattheexpenseofadeliberateandrigoroustreatment.MostresultsareprovenindetailHowever,manyofthesecanbeskippedinfavorofamoreproblem-solvingorientedapproachdependingonthereader'sobjectives.Somereadersmayliketoincorporatesomeformoftechnology(computeralgebrasystem(CAS)orgraphingcalculator)andthereareseveralinstancesinthetextwherethepoweroftechnologyisillustratedusingtheCasMaple.Furthermore,manyexercisesetshaveproblemsthatrequiresomeformoftechnologyfortheirsolutionTheseproblemsaredesignatedwithaoIndevelopingthefourtheditionwehaveoncemorekeptmaximumflexibilityofthematerialinmind.Insodoing,thetextcaneffectivelyaccommodatethedifferentemphasesthatcanbeplacedinacombineddifferentialequationsandlinearalgebracourse,thevaryingbackgroundsofstudentswhoenrollinthistypeofcourse,andthefactthatdifferentinstitutionshavedifferentcreditvaluesforsuchacourse.Thewholetextcanbecoveredinafivecredit-hourcourse.Forcourseswithalowercredit-hourvalue,someselectivitywillhavetobeexercised.Forexample,much(orall)ofChapterImaybeomittedsincemoststudentswillhaveseenmanyofthesedifferentialequationstopicsinanearliercalculuscourse,andtheremainderofthetextdoesnotdependonthetechniquesintroducedinthischapter.Alternatively,whileoneofthemajorgoalsofthetextistointerweavethematerialondifferentialequationswiththetoolsfromlinearalgebrainasymbioticrelationshipasmuchaspossible,thecorematerialonlinearalgebraisgiveninChapters2-7sothatitispossibletousethisbookforacoursethatfocusessolelyonthelinearalgebrapresentedinthesesixchapters.ThematerialondifferentialequationsiscontainedprimarilyinChapters1and8-1l,andreaderswhohavealreadytakenafirstcourseinlinearalgebracanchoosetoproceeddirectlytothesechaptersThereareothermeansofeliminatingsectionstoreducetheamountofmaterialtobecoveredinacourse.Section2.7containsmaterialthatisnotrequiredelsewhereinthetext,Chapter3canbecondensedtoasinglesection(Section3.4)forreadersneedingonlyacursoryoverviewofdeterminants,andSections4.7,5.4,andthelatersectionsofChapters6and7couldallbereservedforasecondcourseinlinearalgebra.InChapter8Sections8.4,8.8,and8.9canbeomitted,and,dependingonthegoalsofthecourse,Sections8.5and8.6couldeitherbede-emphasizedoromittedcompletelySimilarremarksapplytoSections9.7-9.10.AtCaliforniaStateUniversity,Fullertonwehaveafourcredit-hourcourseforsophomoresthatisbasedaroundthematerialinChapters1-9viiiPrefaceMajorChangesintheFourthEditionSeveralsectionsofthetexthavebeenmodifiedtoimprovetheclarityofthepresentationandtoprovidenewexamplesthatreflectinsightfulillustrationswehaveusedinourowncoursesatCaliforniaStateUniversity,Fullerton.OthersignificantchangeswithinthetextarelistedbeleOW1.ThechapteronvectorspacesinthepreviouseditionhasbeensplitintotwochaptersChapters4and5)inthepresentedition,inordertofocusseparateattentiononvectorspacesandinnerproductspaces.Theshorterlengthofthesetwochaptersisalsointendedtomakeeachofthemlessdaunting2.Thechapteroninnerproductspaces(Chapter5)includesanewsectionprovidinganapplicationoflinearalgebratothesubjectofleastsquaresapproximation3.Thechapteronlineartransformationsinthepreviouseditionhasbeensplitintotwochapters(Chapters6and7)inthepresentedition.Chapter6isfocusedonlineartransformations,whileChapter7placesdirectemphasisonthetheoryofeigenvaluesandeigenvectors.Oncemore,readersshouldfindtheshorterchapterscoveringthesetopicsmoreapproachableandfocused4.Mostexercisesetshavebeenenlargedorrearranged.Over3,000problemsarenowcontainedwithinthetext,andmorethan600concept-orientedtrue/falseitemsarealsoincludedinthetext5.Everychapterofthebookincludesoneormoreoptionalprojectsthatallowformorein-depthstudyandapplicationofthetopicsfoundinthetext6.ThebackofthebooknowincludestheanswertoeveryTrue-FalsereviewitemcontainedinthetextAcknowledgmentsWewouldliketoacknowledgethethoughtfulinputfromthefollowingreviewersofthefourthedition:JameyBassofCityCollegeofSanFrancisco,TamarFriedmannofUniversityofrochester,andlinghaiZhangofLehighUniversityAlloftheircommentswereconsideredcarefullyinthepreparationofthetextS.A.Annin:Ioncemorethankmyparents,ArthurandJuliannAnnin,fortheirloveandencouragementinallofmyprofessionalendeavors.Ialsogratefullyacknowledgethemanystudentswhohavetakenthiscoursewithmeovertheyearsand,insodoinghaveenhancedmyloveforthesetopicsanddeeplyenrichedmycareerasaprofessorFirst-OrderDifferentiaEquations1.1DifferentialEquationsEverywhereadifferentialequationisanyequationthatinvolvesoneormorederivativesofanunknownfunction.Forexample(1.1.1dxds(S-1)(1.1.2)aredifferentialequations.Inthedifferentialequation(1.1.1)theunknownfunctionordependentvariableisy,andxistheindependentvariable;inthedifferentialequation(1.1.2)thedependentandindependentvariablesareSandt,respectively.Differentialequationssuchas(1.1.1)and(1.1.)inwhichtheunknownfunctiondependsonlyonasingleindependentvariablearecalledordinarydifferentialequations.Bycontrast,thedifferentialequationLaplace'sequation)0involvespartialderivativesoftheunknownfunctionu(x,y)oftwoindependentvariablesxandy.SuchdifferentialequationsarecalledpartialdifferentialequationsOnewayinwhichdifferentialequationscanbecharacterizedisbytheorderofthehighestderivativethatoccursinthedifferentialequationThisnumberiscalledtheorderofthedifferentialequation.Thus,(l1.1)hasordertwo,whereas(1.1.2)isafirst-orderdifferentialequation1
2024/1/26 14:10:04 16.51MB Differential Equations Linear Algebra
1
虽不懂VB但我却一直留着(大方精致)...分享呀第一章VB语言概述1.1、VB简介1.2、VB语言的基本特点及VB应用程序的基本持点1.3、为何我选择VB作为开发语言1.4、VB6.0应用的基本开发方法第二章用VB开发多功能日历程序2.1、本程序运行界面简介2.2、本程序部分控件的设置2.3、主程序部分代码第三章毕业设计总结第四章主要参考文献
2024/1/20 21:08:39 404KB VB 日历
1
共 554 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡