辅导班内部重点资料,信息系统项目管理师考试重点、难点、考点归纳
2024/2/10 11:44:23 21.12MB 信息系统项目 小马 2019 最新
1
量子马尔可夫链:混合系统的描述,等价性以及模型检查线性时间属性
2024/2/9 20:46:16 536KB 研究论文
1
详细描述了基于隐马尔可夫模型的语音识别算法,具有较高的识别率
2024/2/9 1:13:15 272KB HMM
1
亚马逊开店服务流程.pptx
2024/2/8 21:22:26 20.44MB 亚马逊 电商 跨境
1
自1897年马可尼(Marconi)第一次展示了无线电使用在英格兰海峡里行驶的船只保持连续不断的通信能力以来,运动中的通信能力已经得到举世瞩目的发展
2024/2/7 16:02:19 20.01MB 无线 通信
1
此code仅限于在做小棋种的童靴,能看懂就看懂,看不懂供参考,亚马逊棋~
2024/2/5 4:41:25 7.94MB 亚马逊棋 源码
1
此SQL文件包含4169条国家及城市数据,较为全面,中英文拼音3版互译,直接拉进数据库执行语句即可,超级好用,更详细的街道等数据是没有的,这些数据,即使在亚马逊的选择框里也没有,只能手动输入,需要的小伙伴下载吧!
2024/2/4 19:25:19 104KB mysql
1
统计自然语言处理第二版宗成庆pdf是一本经过第二次更新的统计自然语言方面的教材。
自然语言作为人类思想情感最基本,最直接,最方便的表达工具,无时无刻不充斥在人类社会的各个角落。
小编推荐的这本统计自然语言处理全面介绍了统计自然语言处理的基本概念、理论方法和新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、篇章分析、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。
2024/2/2 9:26:17 16.87MB 自然语言处理 nlp
1
AES的S盒可以用扩展的欧几里德和费马定理来写,这里我采用费马定理。
要注意的是S盒的求逆过程是在加瓦罗域下进行的,所以里面的所有乘法、除法、加法、减法都是在加瓦罗域下进行。
2024/2/2 5:36:08 8KB AES S盒 费马定理
1
DifferentialEquationsandLinearAlgebra(4th)英文无水印原版pdf第4版pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开本资源转载自网络,如有侵权,请联系上传者或csdn删除查看此书详细信息请在美国亚马逊官网搜索此书EditorialDirector,Mathematics:ChristinehoagEditor-in-Chief:DeirdreLynchAcquisitionsEditor:WilliamHoffmaProjectTeamLead:ChristinaleProjectmanager:LaurenMorseEditorialAssistant:JenniferSnyderProgramTeamLead:KarenwernholmProgramManagerDaniellesimbajonCoverandillustrationDesign:StudioMontageProgramDesignLead:BethPaquinProductMarketingManagerClaireKozarProductMarketingCoordiator:BrookesmithFieldMarketingManager:EvanStCyrSeniorAuthorSupport/TechnologySpecialist:JoevetereSeniorProcurementSpecialist:CarolMelvilleInteriorDesign,ProductionManagement,AnswerArt,andCompositioneNergizerAptara,LtdCoverImage:LighttrailsonmodernbuildingbackgroundinShanghai,China-hxdyl/123RFCopyrightO2017,2011,2005PearsonEducation,Inc.oritsaffiliates.AllRightsReserved.PrintedintheUnitedStatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopyingrecording,orotherwise.Forinformationregardingpermissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissionsdepartmentpleasevisitwww.pearsoned.com/permissions/PEARSONandALWAYSLEARNINGareexclusivetrademarksintheU.s.and/orothercountriesownedbyPearsonEducation,Inc.oritsaffiliatesUnlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowandanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeordescriptivepurposesonly.SuchofsuchmarksoranyrelationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesordistributortreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonsproductsbytheownersLibraryofCongressCataloging-in-PublicationDataGoode.StephenwDifferentialequationsandlinearalgebra/StephenW.GoodeandScottA.AnninCaliforniastateUniversity,Fullerton.-4theditionpagescmIncludesindexISBN978-0-321-96467-0—ISBN0-32196467-51.Differentialequations.2.Algebras,Linear.I.Annin,Scott.II.TitleQA371.G6442015515’.35-dc23201400601512345678910V031-1918171615PEARSONISBN10:0-321-96467-5www.pearsonhighered.comISBN13:978-0-321-96467-0ContentsPrefacevii1First-OrderDifferentialEquations1.1DifferentialEquationsEverywhere11.2BasicIdeasandTerminology131.3TheGeometryofFirst-OrderDifferentialEquations231.4SeparableDifferentialEquations341.5SomeSimplePopulationModels451.6First-OrderLinearDifferentialEquations531.7ModelingProblemsUsingFirst-OrderLinearDifferentialEquations61.8Changeofvariables711.9ExactDifferentialEquations821.10Numericalsolutiontofirst-OrderDifferentialEquations931.11SomeHigher-OrderDifferentialEquations1011.12ChapterReview1062MatricesandSystemsofLinearEquations1142.1Matrices:Definitionsandnotation1152.2MatrixAlgebra1222.3TerminologyforSystemsofLinearEquations13824R。
w-EchelonMatricesandElementaryR。
wOperations1462.5Gaussianelimination1562.6TheInverseofasquarematrix1682.7ElementaryMatricesandtheLUFactorization1792.8TheInvertiblematrixtheoremi1882.9ChapterReview1903Determinants1963.1TheDefinitionofthedeterminant1963.2PropertiesofDeterminants2093.3CofactorExpansions2223.4SummaryofDeterminants2353.5ChapterReview242iyContents4VectorSpaces2464.1Vectorsinrn2484.2DefinitionofaVectorSpace2524.3Subspaces2634.4SpanningSets2744.5LinearDependenceandLinearIndependence2844.6Basesanddimension2984.7Changeofbasis3114.8RowSpaceandColumnSpace3194.9TheRank-NullityTheorem3254.10InvertibleMatrixTheoremll3314.11ChapterReview3325InnerProductSpaces3395.1DefinitionofanInnerproductspace3405.2OrthogonalSetsofvectorsandorthogonalProjections3525.3Thegram-Schmidtprocess3625.4LeastSquaresApproximation3665.5ChapterReview3766LinearTransformations3796.1Definitionofalineartransformation3806.2Transformationsofr23916.3TheKernelandrangeofalineartransformation3976.4AdditionalPropertiesofLinearTransformations4076.5Thematrixofalineartransformation4196.6Chaiterreview4287EigenvaluesandEigenvectors4337.1TheEigenvalue/EigenvectorProblem4347.2GeneralResultsforEigenvaluesandEigenvectors4467.3Diagonalization4547.4AnIntroductiontotheMatrixExponentialFunction4627.5OrthogonalDiagonalizationandQuadraticforms4667.6Jordancanonicalforms4757.7Chapterreview4888LinearDifferentialEquationsofOrdern4938.1GeneralTheoryforLinearDifferentialEquations4958.2ConstantCoefficientHomogeneousLinearDifferentialEquations5058.3ThemethodofundeterminedcoefficientsAnnihilators5158.4Complex-ValuedTrialSolutions5268.5OscillationsofaMechanicalSystem529Contentsv8.6RLCCircuits5428.7TheVariationofparametersmethod5478.8ADifferentialEquationwithNonconstantCoefficients5578.9Reductionoforder5688.10ChapterReview5739SystemsofDifferentialEquations5809.1First-OrderLinearSystems5829.2VectorFormulation5889.3GeneralResultsforfirst-OrderLinearDifferentialystems5939.4VectorDifferentialEquations:NondefectiveCoefficientMatrix5999.5VectorDifferentialEquations:DefectiveCoefficientMatrix6089.6Variation-of-ParametersforLinearSystems6209.7SomeApplicationsofLinearSystemsofDifferentialEquations6259.8MatrixExponentialFunctionandSystemsofDifferentialEquations6359.9ThePhasePlaneforLinearAutonomousSystems6439.10NonlinearSystems6559.11ChapterReview66310TheLaplaceTransformandSomeElementaryApplications67010.1DefinitionoftheLaplaceTransform67010.2TheExistenceofthelaplacetransformandtheInversetransform67610.3PeriodicFunctionsandtheLaplacetransform68210.4ThetransformofderivativesandsolutionofInitial-Valueproblems68510.5TheFirstShiftingTheorem69010.6TheUnitStepFunction69510.7TheSecondShiftingTheorem69910.8ImpulsiveDrivingTerms:TheDiracDeltaFunction70610.9TheConvolutionIntegral71110.10ChapterReview71711SeriesSolutionstoLinearDifferentiaEquations72211.1AReviewofpowerseries72311.2SeriesSolutionsaboutanOrdinaryPoint73111.3TheLegendreEquation74111.4SeriesSolutionsaboutaRegularSingularPoint75011.5Frobeniustheory75911.6Bessel'sEquationofOrderp77311.7Chapterreview785ViContentsAReviewofComplexNumbers791BReviewofPartialFractions797CReviewofIntegrationTechniques804DLinearlyIndependentSolutionstox2y+xp(x)y+g(x)y=0811Answerstoodd-NumberedExercises814Index849S.W.GoodededicatesthisbooktomeganandtobiS.A.annindedicatesthisbooktoarthurandJuliannthebestparentsanyonecouldaskforPretraceLikethefirstthreeeditionsofDifferentialEquationsandLinearalgebra,thisfourtheditionisintendedforasophomorelevelcoursethatcoversmaterialinbothdifferentialequationsandlinearalgebra.Inwritingthistextwehaveendeavoredtodevelopthestudentsappreciationforthepowerofthegeneralvectorspaceframeworkinformulatingandsolvinglinearproblems.Thematerialisaccessibletoscienceandengineeringstu-dentswhohavecompletedthreesemestersofcalculusandwhobringthematurityofthatsuccesswiththemtothiscourseThistextiswrittenaswewouldnaturallyteachblendinganabundanceofexamplesandillustrations,butnotattheexpenseofadeliberateandrigoroustreatment.MostresultsareprovenindetailHowever,manyofthesecanbeskippedinfavorofamoreproblem-solvingorientedapproachdependingonthereader'sobjectives.Somereadersmayliketoincorporatesomeformoftechnology(computeralgebrasystem(CAS)orgraphingcalculator)andthereareseveralinstancesinthetextwherethepoweroftechnologyisillustratedusingtheCasMaple.Furthermore,manyexercisesetshaveproblemsthatrequiresomeformoftechnologyfortheirsolutionTheseproblemsaredesignatedwithaoIndevelopingthefourtheditionwehaveoncemorekeptmaximumflexibilityofthematerialinmind.Insodoing,thetextcaneffectivelyaccommodatethedifferentemphasesthatcanbeplacedinacombineddifferentialequationsandlinearalgebracourse,thevaryingbackgroundsofstudentswhoenrollinthistypeofcourse,andthefactthatdifferentinstitutionshavedifferentcreditvaluesforsuchacourse.Thewholetextcanbecoveredinafivecredit-hourcourse.Forcourseswithalowercredit-hourvalue,someselectivitywillhavetobeexercised.Forexample,much(orall)ofChapterImaybeomittedsincemoststudentswillhaveseenmanyofthesedifferentialequationstopicsinanearliercalculuscourse,andtheremainderofthetextdoesnotdependonthetechniquesintroducedinthischapter.Alternatively,whileoneofthemajorgoalsofthetextistointerweavethematerialondifferentialequationswiththetoolsfromlinearalgebrainasymbioticrelationshipasmuchaspossible,thecorematerialonlinearalgebraisgiveninChapters2-7sothatitispossibletousethisbookforacoursethatfocusessolelyonthelinearalgebrapresentedinthesesixchapters.ThematerialondifferentialequationsiscontainedprimarilyinChapters1and8-1l,andreaderswhohavealreadytakenafirstcourseinlinearalgebracanchoosetoproceeddirectlytothesechaptersThereareothermeansofeliminatingsectionstoreducetheamountofmaterialtobecoveredinacourse.Section2.7containsmaterialthatisnotrequiredelsewhereinthetext,Chapter3canbecondensedtoasinglesection(Section3.4)forreadersneedingonlyacursoryoverviewofdeterminants,andSections4.7,5.4,andthelatersectionsofChapters6and7couldallbereservedforasecondcourseinlinearalgebra.InChapter8Sections8.4,8.8,and8.9canbeomitted,and,dependingonthegoalsofthecourse,Sections8.5and8.6couldeitherbede-emphasizedoromittedcompletelySimilarremarksapplytoSections9.7-9.10.AtCaliforniaStateUniversity,Fullertonwehaveafourcredit-hourcourseforsophomoresthatisbasedaroundthematerialinChapters1-9viiiPrefaceMajorChangesintheFourthEditionSeveralsectionsofthetexthavebeenmodifiedtoimprovetheclarityofthepresentationandtoprovidenewexamplesthatreflectinsightfulillustrationswehaveusedinourowncoursesatCaliforniaStateUniversity,Fullerton.OthersignificantchangeswithinthetextarelistedbeleOW1.ThechapteronvectorspacesinthepreviouseditionhasbeensplitintotwochaptersChapters4and5)inthepresentedition,inordertofocusseparateattentiononvectorspacesandinnerproductspaces.Theshorterlengthofthesetwochaptersisalsointendedtomakeeachofthemlessdaunting2.Thechapteroninnerproductspaces(Chapter5)includesanewsectionprovidinganapplicationoflinearalgebratothesubjectofleastsquaresapproximation3.Thechapteronlineartransformationsinthepreviouseditionhasbeensplitintotwochapters(Chapters6and7)inthepresentedition.Chapter6isfocusedonlineartransformations,whileChapter7placesdirectemphasisonthetheoryofeigenvaluesandeigenvectors.Oncemore,readersshouldfindtheshorterchapterscoveringthesetopicsmoreapproachableandfocused4.Mostexercisesetshavebeenenlargedorrearranged.Over3,000problemsarenowcontainedwithinthetext,andmorethan600concept-orientedtrue/falseitemsarealsoincludedinthetext5.Everychapterofthebookincludesoneormoreoptionalprojectsthatallowformorein-depthstudyandapplicationofthetopicsfoundinthetext6.ThebackofthebooknowincludestheanswertoeveryTrue-FalsereviewitemcontainedinthetextAcknowledgmentsWewouldliketoacknowledgethethoughtfulinputfromthefollowingreviewersofthefourthedition:JameyBassofCityCollegeofSanFrancisco,TamarFriedmannofUniversityofrochester,andlinghaiZhangofLehighUniversityAlloftheircommentswereconsideredcarefullyinthepreparationofthetextS.A.Annin:Ioncemorethankmyparents,ArthurandJuliannAnnin,fortheirloveandencouragementinallofmyprofessionalendeavors.Ialsogratefullyacknowledgethemanystudentswhohavetakenthiscoursewithmeovertheyearsand,insodoinghaveenhancedmyloveforthesetopicsanddeeplyenrichedmycareerasaprofessorFirst-OrderDifferentiaEquations1.1DifferentialEquationsEverywhereadifferentialequationisanyequationthatinvolvesoneormorederivativesofanunknownfunction.Forexample(1.1.1dxds(S-1)(1.1.2)aredifferentialequations.Inthedifferentialequation(1.1.1)theunknownfunctionordependentvariableisy,andxistheindependentvariable;inthedifferentialequation(1.1.2)thedependentandindependentvariablesareSandt,respectively.Differentialequationssuchas(1.1.1)and(1.1.)inwhichtheunknownfunctiondependsonlyonasingleindependentvariablearecalledordinarydifferentialequations.Bycontrast,thedifferentialequationLaplace'sequation)0involvespartialderivativesoftheunknownfunctionu(x,y)oftwoindependentvariablesxandy.SuchdifferentialequationsarecalledpartialdifferentialequationsOnewayinwhichdifferentialequationscanbecharacterizedisbytheorderofthehighestderivativethatoccursinthedifferentialequationThisnumberiscalledtheorderofthedifferentialequation.Thus,(l1.1)hasordertwo,whereas(1.1.2)isafirst-orderdifferentialequation1
2024/1/26 14:10:04 16.51MB Differential Equations Linear Algebra
1
共 517 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡