IEC61850服务端模仿软件V1.01、手动模仿发送遥测,遥信2、可做正常的遥控回复3、可同时加载大于250台MMS通信设备及其IP,便于远动或后台监控的直接接入,整站模仿4、支持SCL文件导入5、日志显示待开发功能:1、发送脚本功能,可通过脚本定制发送的信息内容,顺序,延时,循环等2、定制遥控点的回复方式,返回正确或失败,同时返回遥控对应遥信点信息注意:1、请用管理员权限运行此程序2、请将使用此软件的计算机连接网卡名称设置为“本地连接”3、此版本目前有600秒使用限时
2016/8/15 8:55:07 8.64MB IEC618 qt mmslit
1
一种用FPGA实现的二值图像连通域标记算法。
这个算法只需要缓存若干行的图像数据,并在这若干行的固定延时内就给出结果,实时性很高,计算延时就只要这若干行,FPGA也无需外界SRAM或DDR来缓存图像数据。
2018/11/6 11:07:26 1.82MB FPGA 算法 连通域
1
sht30的基于c51单片机驱动程序:#include#include#include"I2C.h"#include"SHT30.h"#defineuintunsignedint#defineucharunsignedcharvoiddisplay();unsignedcharcodetableduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};uchardataDIS_ROME[6]={0,0,0,0,0,0};//显示缓存区(4)ucharDISP=0;//缓存区指针ucharSCANF=0xDF;//扫描指针sbitLED1=P1^0;sbitLED2=P1^1;sbitLED3=P1^2;sbitLED4=P1^3;sbitVOC_A=P3^5;sbitVOC_B=P3^6;sbitdula=P2^6;//IO口定义sbitwela=P2^7;sbitkey=P3^4;sbitbeep_dr=P2^3;uintpm1=0;uintpm2=0;uintpm10=0;ucharvr=0;uintintrcnt=0;bitF_1HZ;uintvoice_time_cnt;ucharUart_Buf;ucharRec_Addr=0;ucharmode=0;ucharRec_Uart=0;ucharRecive_Buf[30]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};#definekeyP34#defineconst_key_time150unsignedcharucKeySec=0;//被触发的按键编号unsignedintuiKeyTimeCnt1=0;//按键去抖动延时计数器unsignedcharucKeyLock1=0;//按键触发后自锁的变量标志unsignedchardisplaycnt=0;voidkeyscan(){if(key==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位{ucKeyLock1=0;//按键自锁标志清零uiKeyTimeCnt1=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。
}elseif(ucKeyLock1==0)//有按键按下,且是第一次被按下{uiKeyTimeCnt1++;//累加定时中断次数if(uiKeyTimeCnt1>const_key_time1){uiKeyTimeCnt1=0;ucKeyLock1=1;//自锁按键置位,避免不断触发ucKeySec=1;//触发1号键}}}voidkeyservice(){if(ucKeySec){displaycnt=!displaycnt;}ucKeySec=0;}voidUartInit(void)//9600bps@12.000MHz{TMOD=0x01;//设置定时器0为工作方式1TH0=0xf8;//重装初始值(65535-500)=65035=0xfe0bTL0=0x2f;SCON=0x50;TMOD=0X21;IP=0x10;//把串口中断设置为最高优先级,EA=1;ES=1;ET0=1;TR0=1;}voidT0_time(void)interrupt1//定时中断{TF0=0;//清除中断标志TR0=0;//关中断keyscan();keyservice();display();
2022/9/6 21:13:46 4KB sht30
1
【国外电子与通信教材系列】宽带无线数字通信【ISBN】7-5053-7667-5【出版发行项】北京-电子工业出版社【出版日期】2002.9【格式】超星转成的pdf【页数】411页【作者简介】AndreasF.Molisch,奥地利的维也纳理工大学通信与射频工程学院移动通信系的副教授,合编著有《宽带无线数字通信》等。
【本书简介】本书将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
深入的引见。
本书的主要特点是:将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
本书除了引见基础知识和基本原理以外,还引见了最新的学术前沿及技术进展。
这是一本很好的教科书和技术参考书,适用于电子与通信类专业的高年级本科生、研究生及研究所和企业的工程技术人员。
【目录】第一部分宽带系统引论第1章基础知识1.1什么是宽带系统1.2发展历史参考文献第2章当前及未来的宽带系统2.1DECT和PHS2.2GSM/DCS-19002.3IS-1362.4IS-952.5W-CDMA2.6HIPERLAN-II参考文献第3章无线移动信道3.1平衰落信道3.2时间色散信道:直观描述3.3时间色散信道:系统理论描述3.3.1确定性解释3.3.2随机性解释3.4广义平稳非相关散射WSSUS假设3.4.1广义平稳WSS3.4.2非相关散射3.4.3广义平稳非相关散射WSSUS3.4.4WSSUS系统函数的一些特例3.5表达时间色散信道的参数3.5.1延迟扩展和相关带宽3.5.2延迟窗口和干扰比3.5.3总结3.6时间色散信道模型3.6.1抽头延时线模型3.6.2COST207模型3.6.3Hashemi-Suzuki-Turin模型3.7含有角度色散的模型参考文献第4章概述第5章展望5.1各种方法的比较5.2未来的发展5.2.1自适应天线5.2.2多输入-多输出系统5.2.3多用户检测参考文献第二部分非均衡系统第6章为什么要研究非均衡系统参考文献第7章系统模型7.1发射机7.1.1相移键控7.1.2频移键控7.2信道7.3接收机7.3.1相干和非相干解调7.3.2PSK和CPFSK的差分检测7.3.3GPFSK的鉴频器检测7.4同信道干扰的处理参考文献第8章固定抽样的计算方法8.1一般考虑8.1.1符号序列的平均8.1.2经典接收机的分析8.1.3接收信号的相关特性8.2蒙特卡洛MC模拟方法8.2.1计算概述8.2.2文献评论8.3高斯变量二次型QFGV方法8.3.1有关公式8.3.2文献评论8.4高斯矢量问角度ABGV方法8.5相关矩阵特征值方法8.6群延迟方法8.6.1文献评论8.7差错域方法8.8等效信道模型方法8.9其他方法:文献评论参考文献第9章固定抽样的结果9.1调制.信道和接收机的影响9.2CPFSK9.2.1文献评论9.3FSK9.4相干检测PSK9.5差分检测PSK9.5.1文献评论参考文献第10章降低差错平台的调制方式和接收机结构10.1部分比特检测10.2非线性鉴频器10.3降低差错平台的调制方式参考文献第11章自适应抽样11.1盲自适应抽样11.2具有训练序列的自适应抽样11.3具有训练序列的同步参考文献第12章天线分集12.1天线分集的分类12.2高斯变量二次型QFGV方法12.2.1文献评论12.3差错域方法12.4阴影信道中的分集12.5采用固定抽样的分集结果12.6采用自适应抽样的分集结果参考文献第13章综述与结论参考文献附录A采用固定抽样的比特差错宰计算公式A.1高斯变量二次型QFGV方法的解A.2高斯矢量间角度ABGV方法的解A.3差错域方法的解参考文献附录B第二部分的字母表第三
1
【国外电子与通信教材系列】宽带无线数字通信【ISBN】7-5053-7667-5【出版发行项】北京-电子工业出版社【出版日期】2002.9【格式】超星转成的pdf【页数】411页【作者简介】AndreasF.Molisch,奥地利的维也纳理工大学通信与射频工程学院移动通信系的副教授,合编著有《宽带无线数字通信》等。
【本书简介】本书将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
深入的引见。
本书的主要特点是:将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
本书除了引见基础知识和基本原理以外,还引见了最新的学术前沿及技术进展。
这是一本很好的教科书和技术参考书,适用于电子与通信类专业的高年级本科生、研究生及研究所和企业的工程技术人员。
【目录】第一部分宽带系统引论第1章基础知识1.1什么是宽带系统1.2发展历史参考文献第2章当前及未来的宽带系统2.1DECT和PHS2.2GSM/DCS-19002.3IS-1362.4IS-952.5W-CDMA2.6HIPERLAN-II参考文献第3章无线移动信道3.1平衰落信道3.2时间色散信道:直观描述3.3时间色散信道:系统理论描述3.3.1确定性解释3.3.2随机性解释3.4广义平稳非相关散射WSSUS假设3.4.1广义平稳WSS3.4.2非相关散射3.4.3广义平稳非相关散射WSSUS3.4.4WSSUS系统函数的一些特例3.5表达时间色散信道的参数3.5.1延迟扩展和相关带宽3.5.2延迟窗口和干扰比3.5.3总结3.6时间色散信道模型3.6.1抽头延时线模型3.6.2COST207模型3.6.3Hashemi-Suzuki-Turin模型3.7含有角度色散的模型参考文献第4章概述第5章展望5.1各种方法的比较5.2未来的发展5.2.1自适应天线5.2.2多输入-多输出系统5.2.3多用户检测参考文献第二部分非均衡系统第6章为什么要研究非均衡系统参考文献第7章系统模型7.1发射机7.1.1相移键控7.1.2频移键控7.2信道7.3接收机7.3.1相干和非相干解调7.3.2PSK和CPFSK的差分检测7.3.3GPFSK的鉴频器检测7.4同信道干扰的处理参考文献第8章固定抽样的计算方法8.1一般考虑8.1.1符号序列的平均8.1.2经典接收机的分析8.1.3接收信号的相关特性8.2蒙特卡洛MC模拟方法8.2.1计算概述8.2.2文献评论8.3高斯变量二次型QFGV方法8.3.1有关公式8.3.2文献评论8.4高斯矢量问角度ABGV方法8.5相关矩阵特征值方法8.6群延迟方法8.6.1文献评论8.7差错域方法8.8等效信道模型方法8.9其他方法:文献评论参考文献第9章固定抽样的结果9.1调制.信道和接收机的影响9.2CPFSK9.2.1文献评论9.3FSK9.4相干检测PSK9.5差分检测PSK9.5.1文献评论参考文献第10章降低差错平台的调制方式和接收机结构10.1部分比特检测10.2非线性鉴频器10.3降低差错平台的调制方式参考文献第11章自适应抽样11.1盲自适应抽样11.2具有训练序列的自适应抽样11.3具有训练序列的同步参考文献第12章天线分集12.1天线分集的分类12.2高斯变量二次型QFGV方法12.2.1文献评论12.3差错域方法12.4阴影信道中的分集12.5采用固定抽样的分集结果12.6采用自适应抽样的分集结果参考文献第13章综述与结论参考文献附录A采用固定抽样的比特差错宰计算公式A.1高斯变量二次型QFGV方法的解A.2高斯矢量间角度ABGV方法的解A.3差错域方法的解参考文献附录B第二部分的字母表第三
1
LED延时中缀函数,输入数字,LED就会延时多少秒,固定的数字
2022/9/3 4:58:08 9KB LED、KEIL
1
这是一个一对多的web在线客服系统,一般应用于购物类网站,相信很多人应该知道。
本客服系统由有一个属于管理员一样的类似qq的浮动面板,这个面板能实时接入网站前台所有客户的即使信息对话,与用户的聊天对话中,支付表情,加粗 ,下滑线……采用.net2.0+ajax, 在研究的那段时间,我不断想尝试服务器推,可是没弄好,本即时对话聊天还是采用的ajax轮询, 一对多的关系,这个功能系统只是根据需要研究之余的衍射产品,在实际应用中会有信息延时的情况,我认为是ajax轮询建立对数据关系太多导致,如在比较多对话的情况下,应考虑如何避免和优化这个环节,这也我后来尝试服务器推送的原因,不过后来用qq了,这东西就没有研究下去的意义了。
但这个功能对于某些应用有一定的帮助,如 即时聊天功能的开发,以及一对多关系的实现,或多对多的实现,同时本站支付表情或文本编辑这些,编辑器功能也是自己js创作,这也对研究编辑器的朋友有帮助。
2021/3/26 1:30:17 390KB ajax c# .net
1
经过判断//成功实现粗略差速intDirmin=257;intDirmax=387;intAccmin=160;intAccmax=885;constintxpin=A1;//x-axisconstStringXHEADER="X:";voidsetup(){//putyoursetupcodehere,torunonce:Serial.begin(9600);pinMode(A1,INPUT);//设置9号口为输出端口:pinMode(A0,INPUT);//设置10号口为输出端口:pinMode(9,OUTPUT);//设置9号口为输出端口:pinMode(10,OUTPUT);//设置10号口为输出端口:}voidloop(){intDir=analogRead(xpin);//Serial.print(XHEADER+analogRead(xpin));//Serial.print(analogRead(A0));//8Serial.println();//putyourmaincodehere,torunrepeatedly:intAcc=analogRead(A0);intAcc_2=map(Acc,Accmin,Accmax,0,255);intDir_2=map(Dir,Dirmin,Dirmax,0,255);//Serial.print(Dir);//Serial.println();if(Dir_2>=0&&Dir;_2136&&Dir;_2=120){analogWrite(9,Acc_2);analogWrite(10,Acc_2);}delay(300);//延时300毫秒}
2015/9/8 16:55:13 1KB arduin 小车
1
voidSET_KEY(){bitSET_FLAG=1;if(SET==0)//设定按键按下{delayms(40);if(SET==1)//延时去除抖动再次判断能否按下按键{while(SET_FLAG==1){Display_HI_Alarm();//设定上限温度值if(ADD==0)//增加按键{delayms(40);//延时去除抖动再次判断能否按下按键if(ADD==1)HI_Alarm++;//温度值加一}if(DEC==0)//减小按键{delayms(40);if(DEC==1)//延时去除抖动再次判断能否按下按键HI_Alarm--;//温度值减一}if(SET==0)//以下表示再次按下设定按键进入设定下限程序{delayms(40);if(SET==1)//延时去除抖动再次判断能否按下按键{while(1){Display_LO_Alarm();//设定下限温度值if(ADD==0)//增加按键{delayms(40);if(ADD==1)//延时去除抖动再次判断能否按下按键LO_Alarm++;//温度值加一}if(DEC==0)//减小按键{delayms(40);if(DEC==1)//延时去除抖动再次判断能否按下按键LO_Alarm--;//温度值减一}if(SET==0)//设定按键按下{delayms(40);if(SET==1){//延时去除抖动再次判断能否按下按键SET_FLAG=0;break;//上下限设定完成退出}}}}}}}}}
2020/2/6 6:05:33 5.02MB 51单片机 源程序 代码 电路方案
1
TMC5160步进电机驱动板ALTIUM硬件原理图+PCB+STM32单片机TMC5160驱动源代码,硬件采用2层板设计,大小为53*56mm,包括完好的原理图PCB及STM32软件驱动代码。
//TMC5160SET sendData(0xEC,0x000100C3); //PAGE43:CHOPCONF:TOFF=3,HSTRT=4,HEND=1,TBL=2,CHM=0(spreadcycle) sendData(0x90,0x00061F0A); //PAGE33:IHOLD_IRUN:IHOLD=10,IRUN=31(max.current),IHOLDDELAY=6 sendData(0x91,0x0000000A); //PAGE33:TPOWERDOWN=10:电机静止到电流减小之间的延时 sendData(0x80,0x00000004); //PAGE27:EN_PWM_MODE=1 sendData(0x93,0x000001F4); //PAGE33:TPWM_THRS=500,对应切换速
1
共 204 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡