基于Flink+Doris构建高功能高扩展的全端实时数据仓库教程,2021年5月新课,课程基于Flink1.11.3,DorisDB0.13.9版本。
本课程基于真实热门的互联网电商业务场景为案例讲解,结合分层理论和实战对数仓设计进行详尽的讲解,基于Flink+DorisDB实现真正的实时数仓,数据来及分析,实时报表应用。
课程具体数仓报表应用指标包括:实时大屏分析、流量分析、订单分析、商品分析、商家分析等,数据涵盖全端(PC、移动、小程序)应用,与互联网企业大数据技术同步,让大家能够学到大数据企业级实时数据仓库的实战经验。
2020/11/25 3:26:43 619B Flink doris 数据仓库
1
C#写的中小学排课软件,VS2010,WinForm全部源代码和Setup项目,立即可以编译运行或打安装包。
软件大量使用范型技术,抽象排课的数据及操作,代码极其精炼,功能强大。
软件使用复杂的数据结构,得到极高效率,特别是手工调课时能够瞬时检测出冲突、汇集所有关联元素的规则并评估。
软件基于引擎驱动界面的架构,引擎处理所有逻辑并触发界面的更新。
软件是一个强大的无流程软件,系统操作是并行的,任意时辰可以增删改任意数据,系统智能处理既有课表。
软件有清晰的分层,容易阅读、修改:UI层、业务逻辑层、AI模块(智能分析)、DAC层(使用ACCESS)。
2020/9/23 13:40:48 1.6MB 排课 源代码 c# 算法
1
深度强化学习是人工智能领域的一个新的研究热点.它以一种通用的方式将深度学习的感知能力与强化学习的决策能力相结合,并能够通过端对端的学习方式实现从原始输入到输出的直接控制.自提出以来,在许多需要感知高维度原始输入数据和决策控制的任务中,深度强化学习方法已经取得了实质性的突破.该文首先阐述了三类主要的深度强化学习方法,包括基于值函数的深度强化学习、基于策略梯度的深度强化学习和基于搜索与监督的深度强化学习;
其次对深度强化学习领域的一些前沿研究方向进行了综述,包括分层深度强化学习、多任务迁移深度强化学习、多智能体深度强化学习、基于记忆与推理的深度强化学习等.最后总结了深度强化学习在若干领域的成功应用和未来发展趋势.
2021/5/8 20:51:30 2.73MB 深度学习 强化学习
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡