★问题描述:给定一个赋权无向图G=(V,E),每个顶点v∈V都有一个权值w(v)。
如果U∈V,且对任意(u,v)∈E有u∈U或v∈U,就称U为图G的一个顶点条覆盖.G的最小权顶点覆盖是指G中所含顶点权之和最小的顶点覆盖。
★算法设计:对于结定的无向图G,设计一个优先队列式分支限界法,计算G的最小权顶点覆盖。
★数据输入:由文件input.txt给出输入数据。
第1行有2个正整数n和m,表示给定的图G有n个顶点和m条边,顶点编号为1,2,.....,n.第2行有n个正整数表示n个顶点的权.接上去的m行中,每行有2个正整数u,v,表示图G的一条边(u,v)。
★结果输出:将计算出的最小权顶点覆盖的顶点权之和以及最优输出到文件output.txt.文件第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi,1≤i≤n,xi=0表示顶点i不在最小权顶点覆盖中。
2015/2/20 23:57:17 363KB 最小权顶点覆盖问题
1
下载链接:蓝奏云:https://gfdgdxi.lanzous.com/b01nzalvc,密码:fik7迅雷网盘:https://pan.xunlei.com/s/VMSG9IqahsL8eJBeSU4FTbmqA1,提取码:etwi百度网盘:链接:https://pan.百度.com/s/1_SUS0sTCYmcqEA85CnkFwg提取码:jq83Gitee:https://gitee.com/gfdgd-xi/word-to-html
2021/2/3 10:28:31 3KB Word html Python Linux
1
相关向量机的MATLAB代码,经过验证是正确的,很实用推荐相关向量机(Relevancevectormachine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Supportvectormachine,简称SVM)一样的函数方式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。
RVM原理步骤RVM通过最大化后验概率(MAP)求解相关向量的权重。
对于给定的训练样本集{tn,xn},类似于SVM,RVM的模型输出定义为y(x;w)=∑Ni=1wiK(X,Xi)+w0其中wi为权重,K(X,Xi)为核函。
因此对于,tn=y(xn,w)+εn,假设噪声εn服从均值为0,方差为σ2的高斯分布,则p(tn|ω,σ2)=N(y(xi,ωi),σ2),设tn独立同分布,则整个训练样本的似然函数可以表示出来。
对w与σ2的求解如果直接使用最大似然法,结果通常使w中的元素大部分都不是0,从而导致过学习。
在RVM中我们想要避免这个现像,因此我们为w加上先决条件:它们的机率分布是落在0周围的正态分布:p(wi|αi)=N(wi|0,α?1i),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0.RVM的步骤可以归结为下面几步:1.选择适当的核函数,将特征向量映射到高维空间。
虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函数,RBF核函数,Laplace核函数,多项式核函数等。
尤其以高斯核函数应用最为广泛。
可能于高斯和核函数的非线性有关。
选择高斯核函数最重要的是带宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降2.初始化α,σ2。
在RVM中α,σ2是通过迭代求解的,所以需要初始化。
初始化对结果影响不大。
3.迭代求解最优的权重分布。
4.预测新数据。
2021/2/5 11:51:53 17KB 相关向量机 rvm
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡