%线性调频信号的实部和虚部及时域脉压输出clearall;clc;T=16e-6;B=5e6;K=B/T;fs=6*B;Ts=1/fs;N=T/Ts;t=-T/2:T/(N-1):T/2;s=exp(j*pi*K*t.^2);y=conv(s,conj(s));len=length(y);t1=-T/2:T/(len-1):T/2;figure;plot(t,real(s));gridon;axis([-1.2e-51.2e-5-11]);xlabel('时间(s)');ylabel('幅度');title('LFM信号的I路');figure;plot(t,imag(s));gridon;axis([-1.2e-51.2e-5-11]);xlabel('时间(s)');ylabel('幅度');title('LFM信号的Q路');figure;plot(t1,20*log10(abs(y)/max(abs(y))));gridon;axis([-1.2e-51.2e-5-900]);xlabel('时间(s)');ylabel('幅度(dB)');title('时域脉压后的波形(未加权)');subplot(311);plot(t,real(s));gridon;xlabel('time(s)');ylabel('amplitude(dB)');title('realpartofLFM:T=16us,B=4MHz');axis([-T/2T/2-11]);subplot(312);plot(t,imag(s));gridon;xlabel('time(s)');ylabel('amplitude(dB)');title('imagepartofLFM:T=16us,B=4MHz');axis([-T/2T/2-11]);subplot(313);plot(t1,20*log10(abs(y)/max(abs(y))));gridon;axis([-1.2e-51.2e-5-900]);xlabel('时间(s)');ylabel('幅度(dB)');title('时域脉压后的波形(未加权)');
2024/3/14 17:47:39 2KB lfm match filter
1
对matlab中平滑处理做了详细的介绍yy1=smooth(y,30); %利用移动平均法对y做平滑处理>>figure; %新建一个图形窗口>>plot(t,y,'k:'); %绘制加噪波形图>>holdon;>>plot(t,yy1,'k','linewidth',3); %绘制平滑后波形图>>xlable('t');>>xlabel('t');>>ylabel('moving');>>legend('加噪波形','平滑后波形');
2024/2/23 10:50:33 133KB smooth平滑
1
昨天下载了http://download.csdn.net/detail/du18254261003/5229769这个资源,由于版本问题,不能直接运行。
然后对其进行了改进,在x64系统上运行通过。
环境说明:win7x64;matlab2016;VS2015。
最后,感谢原帖。
2023/7/10 9:48:12 1.4MB MATLAB C#
1
简单的遗传算法,计算函数最值.functionga_main()%遗传算法程序%n--种群规模%ger--迭代次数%pc---交叉概率%pm--变异概率%v--初始种群(规模为n)%f--目标函数值%fit--适应度向量%vx--最优适应度值向量%vmfit--平均适应度值向量clearall;closeall;clc;%清屏tic;%计时器开始计时n=20;ger=100;pc=0.65;pm=0.05;%初始化参数%以上为经验值,可以更改。
%生成初始种群v=init_population(n,22);%得到初始种群,22串长,生成20*22的0-1矩阵[N,L]=size(v);%得到初始规模行,列disp(sprintf('Numberofgenerations:%d',ger));disp(sprintf('Populationsize:%d',N));disp(sprintf('Crossoverprobability:%.3f',pc));disp(sprintf('Mutationprobability:%.3f',pm));%sprintf可以控制输出格式%待优化问题xmin=0;xmax=9;%变量X范围f='x+10*sin(x.*5)+7*cos(x.*4)';%计算适应度,并画出初始种群图形x=decode(v(:,1:22),xmin,xmax);"位二进制换成十进制,%冒号表示对所有行进行操作。
fit=eval(f);%eval转化成数值型的%计算适应度figure(1);%打开第一个窗口fplot(f,[xmin,xmax]);%隐函数画图gridon;holdon;plot(x,fit,'k*');%作图,画初始种群的适应度图像title('(a)染色体的初始位置');%标题xlabel('x');ylabel('f(x)');%标记轴%迭代前的初始化vmfit=[];%平均适应度vx=[];%最优适应度it=1;%迭代计数器%开始进化whileit<=ger%迭代次数0代%Reproduction(Bi-classistSelection)vtemp=roulette(v,fit);%复制算子%Crossoverv=crossover(vtemp,pc);%交叉算子%Mutation变异算子M=rand(N,L)<=pm;%这里的作用找到比0.05小的分量%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;%两个0-1矩阵相乘后M是1的地方V就不变,再乘以2.NICE!!确实好!!!把M中为1的位置上的地方的值变反%这里是点乘%变异%Resultsx=decode(v(:,1:22),xmin,xmax);%解码,求目标函数值fit=eval(f);%计算数值[sol,indb]=max(fit);%每次迭代中最优目标函数值,包括位置v(1,:)=v(indb,:);%用最大值代替fit_mean=mean(fit);%每次迭代中目标函数值的平均值。
mean求均值vx=[vxsol];%最优适应度值vmfit=[vmfitfit_mean];%适应度均值it=it+1;%迭代次数计数器增加end
2023/7/1 23:41:32 4KB 遗传算法
1
一、用MATLAB实现如下序列,并画出图形:①单元采样序列移位,100),3()(−=nnnx;
揭示:实现单元采样序列:0001{)(==nnn,可经由如下语句实现:x=zeros(1,N);x(1)=1;n=0:10;x=[zeros(1,3),1,zeros(1,7)];figure(1);stem(n,x);②单元阶跃序列移位,100),3()(−=nnunx揭示:实现单元阶跃序列:0001{)(==nnnu,可经由如下语句实现:x=ones(1,N);n=0:10;x=[zeros(1,3),1,ones(1,7)];figure(2);stem(n,x);
2023/5/2 0:58:32 461KB 数字信号实验代码
1
十多少个matlab绘制三维图的实例,详尽的代码以及表明,含有运行之后的figure,图像
2023/4/24 11:03:03 651KB matlab 三维图 surfc
1
Matlab通过Yahoo与Sina获取历史与实时股票数据inaYahooDataTestbyLiYangEmail:farutoliyang@gmail.com2013/11/26ContentsALittleCleanWork获取历史数据测试获取实时数据测试RecordTimeALittleCleanWorktic;clear;clc;closeall;formatcompact;获取历史数据测试%历史数据通过Yahoo接口获得(历史数据为未复权数据,使用时候请留意)%Yahoo中证券代码为(上海.ss深圳.sz),例如招商银行,600036.ssStockName='600036.ss';StartDate=today-200;EndDate=today;Freq='d';[DataYahoo,Date_datenum,Head]=YahooData(StockName,StartDate,EndDate,Freq);%K线展示scrsz=get(0,'ScreenSize');figure('Position',[scrsz(3)*1/4scrsz(4)*1/6scrsz(3)*4/5scrsz(4)]*3/4);Open=DataYahoo(:,2);High=DataYahoo(:,3);Low=DataYahoo(:,4);Close=DataYahoo(:,5);MT_candle(High,Low,Close,Open,[],Date_datenum);xlim([0length(Open)+1]);title(StockName);
2023/3/7 22:46:05 137KB Matlab 获取 历史 实时
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2019/5/1 5:12:10 973B 数字全息
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2017/1/5 5:10:15 973B 数字全息
1
savegif将位于for循环中的figure动画转化为gif文件用法:savegif必须在for循环中输入savegif函数,默认文件名为‘untitledgif.gif’savegif('filename')必须在for循环中使用,文件名保存为‘filename.gif’.savegif('filename.gif')必须在for循环中使用,文件名保存为‘filename.gif’.留意:在使用该函数前最好使用clearall命令清除全局变量,不过这个Bug已经修复,大家放心使用吧,记得给个好评哦
2016/9/3 11:49:12 975B MATLAB
1
共 28 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡