Deeplearningsimplifiedbytakingsupervised,unsupervised,andreinforcementlearningtothenextlevelusingthePythonecosystemTransferlearningisamachinelearning(ML)techniquewhereknowledgegainedduringtrainingasetofproblemscanbeusedtosolveothersimilarproblems.Thepurposeofthisbookistwo-fold;firstly,wefocusondetailedcoverageofdeeplearning(DL)andtransferlearning,comparingandcontrastingthetwowitheasy-to-followconceptsandexamples.Thesecondareaoffocusisreal-worldexamplesandresearchproblemsusingTensorFlow,Keras,andthePythonecosystemwithhands-onexamples.ThebookstartswiththekeyessentialconceptsofMLandDL,followedbydepictionandcoverageofimportantDLarchitecturessuchasconvolutionalneuralnetworks(CNNs),deepneuralnetworks(DNNs),recurrentneuralnetworks(RNNs),longshort-termmemory(LSTM),andcapsulenetworks.Ourfocusthenshiftstotransferlearningconcepts,suchasmodelfreezing,fine-tuning,pre-trainedmodelsincludingVGG,inception,ResNet,andhowthesesystemsperformbetterthanDLmodelswithpracticalexamples.Intheconcludingchapters,wewillfocusonamultitudeofreal-worldcasestudiesandproblemsassociatedwithareassuchascomputervision,audioanalysisandnaturallanguageprocessing(NLP).Bytheendofthisbook,youwillbeabletoimplementbothDLandtransferlearningprinciplesinyourownsystems.WhatyouwilllearnSetupyourownDLenvironmentwithgraphicsprocessingunit(GPU)andCloudsupportDelveintotransferlearningprincipleswithMLandDLmodelsExplorevariousDLarchitectures,includingCNN,LSTM,andcapsulenetworksLearnaboutdataandnetworkrepresentationandlossfunctionsGettogripswithmodelsandstrategiesintransferlearningWalkthroughpotentialchallengesinbuildingcomplextransferlearningmodelsfromscratchExplorereal-worldresearchproblemsrelatedtocompute
1