提出了基于主振荡功率放大(MOPA)结构的皮秒光纤激光系统。
该系统将重复频率为29.87MHz的半导体可饱和吸收镜被动锁模光纤激光器作为种子源。
采用预放系统并结合声光调制器将种子源的重复频率降至574kHz。
MOPA结构基于棒状光子晶体光纤(PCF),利用PCF大模场、高增益的特点直接对脉冲宽度为30ps的脉冲进行放大,有效抑制了自相位调制效应引起的光谱展宽。
研究结果表明,所提系统的5dB光谱线宽与光脉冲峰值功率成比例,该系统最终输出了近衍射极限、峰值功率为3.4MW的皮秒脉冲(输出功率为20W时,光束质量因子M2=1.01),最高平均输出功率为21.86W,脉冲宽度为11.1ps,中心波长为1030.74nm,5dB光谱线宽为1.75nm。
1
构建了基于混合锁模机制的双向运转掺铒光纤激光器。
激光器采用σ型腔,腔内无隔离装置,以反射式半导体可饱和吸收镜和非线性偏振旋转效应为混合锁模机制,通过精细调节聚焦到半导体可饱和吸收镜上的激光光斑大小和腔内波片的角度,实现了稳定的自启动双向锁模运转。
激光器运转在孤子锁模状态,腔内双向运转的2个脉冲分别由2个偏振分束器耦合输出。
输出的2个脉冲序列重复频率相同,为60.72MHz;
逆时针、顺时针方向输出功率分别为23.7mW和1.3mW,信噪比分别为67.5dB和66.5dB。
逆时针、顺时针方向输出功率相差较大,这是由采用的锁模机制造成的。
2023/7/22 14:17:23 3.64MB 激光器 光纤激光 双向锁模 混合锁模
1
2012年,全年的风电场风速数据(每5min一测)共105121个风速数据及着力数据[m/s],表头Year Month Day Hour Minute power(MW) windspeedat100m(m/s)
2019/1/2 6:25:19 3.12MB 风电场 风速数据
1
我们提出并演示了一种基于pn结的反向击穿的快速有效的硅热光开关。
通过将pn结嵌入到波导中心而直接加热硅波导,受益于对20μm半径的微环谐振器进行330/450ns的开/关时间快速切换和0.12nm/mW的有效热调谐,表明只有8.8兆瓦的高质量因数。
亩这里的结果显示出在未来的光学互连中的巨大应用潜力。
2019/4/12 21:24:37 418KB 研究论文
1
待测设备:INA219芯片;│2-实现功能:│(1)获取电池输出电压;│(2)获取电池输出电流;│(2)获取电池输出功率;││3-INA219驱动调用:│(1)设置芯片参数ina219_SetCalibration_16V_2A();│(2)获取输出电压ina219_GetBusVoltage_mV();│(3)获取输出电流ina219_GetCurrent_uA();│(4)获取输出功率ina219_GetPower_mW();包含INA219的PDF文档和Code,网上搜集整理的使用,以及用ATMEGA8A测试例子
2020/5/16 14:33:39 23.32MB INA219 电流测试 功率测试
1
基于直接驱动永磁同步电机的1.5mw风力发电机组详细建模基于simulink建模模仿从风能转化为电能的全过程内涵算法双闭环控制
2018/11/6 11:07:26 40KB simuli matlab mppt
1
报道了自动锁模飞秒脉冲掺Er3+光纤激光器的实验结果。
在光纤环形腔中通过引入粗波分复用器(CWDM)作为宽带滤波器,实现了中心波长在1550nm,重复频率为2.5GHz,谱线3dB带宽为10.2nm(对应的脉冲宽度为247fs)的激光脉冲输出。
此时的抽运功率为186mW,激光器输出平均功率为1.3mW,从而获得了能够产生飞秒脉冲的高重复频率自动锁模掺Er3+光纤激光器。
2017/8/27 6:24:25 1.42MB 激光器 光纤激光 飞秒脉冲
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡