本文件功能:用BP神经网络预测温湿度。
本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。
其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。
本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。
本次仿真存在不足:1.未修改学习率、附加动量等参量没有解决BP网络收敛慢的问题。
2.没有使用全局优化的算法,没有解决BP容易陷入极值点的问题。
这种用BP网络来进行预测的模型网上有很多,但是大多数都是预测风力发电等,可能也是因为该BP模型是40年代所提出,我是没有找到有温湿度的预测,该代码纯属自己改写的,并且运行无误,现在分享出来,让大家节省一些时间去研究更有深度的算法。
2023/8/2 9:25:48 2.28MB BP神经网络  温湿度预测
1
MATLAB计算两张图像的SNR\PSNR和MSE三个值。
2023/6/2 4:21:14 50KB 图像 SNR PSNR MSE
1
3dmax模子优化插件
2023/5/1 22:14:30 71KB 3dmax
1
max超大容错
2023/4/14 10:16:06 150KB 3dmax
1
VR烘培
2023/3/21 15:39:41 68KB 3dsmax
1
均方误差(mean-squareerror,MSE)是反映估计量与被估计量之间差异程度的一种度量。
设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。
它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。
psnr是“PeakSignaltoNoiseRatio”的缩写,即峰值信噪比,是一种评价图像的客观标准,它具有局限性,一般是用于最大值信号和背景乐音之间的一个工程项目。
2023/3/12 17:25:57 1.3MB 图像质量评价
1
关于图像评价方法中最基本的MSE和PSNR的matlab代码完成
2016/4/15 18:09:24 506B psnr mse matlab
1
解压后看文件提示,直接执行那个只点我,不用管其它的exe文件。
按照命令行提示执行即可。
解压前,记得一定要关闭杀毒软件,比如mse关闭及时防护。
2018/5/24 4:02:43 33.12MB miui
1
在3dmax任意模型上自在画线
2017/9/1 21:15:11 20KB 在3dmax任意模型上自由画线
1
图像处理中的量化方法以及MSE/SNR/PSNR误差计较,采用了Level=16和Level=8两种量化方式。
1
共 23 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡