为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
K-means,传统计算K均值的一种聚类算法,因其复杂度抵而应用最为普遍的一种聚类方法
2024/2/25 4:05:06 2KB k-means matlab
1
详见博文:http://blog.csdn.net/hujingshuang/article/details/49867455
2024/2/23 18:09:41 5KB 聚类数据
1
采用可视化编程工具(如Matlab、Java等)实现一种数据挖掘技术(如K-means聚类、EM聚类等),并进行其挖掘过程和结果的可视化展现,最后采用一组数据,展示其可视化数据挖掘过程和结果。
2024/2/5 19:17:11 573KB 数据挖掘 Kmeans 数据可视化 Androi
1
用C语言写的K-means聚类算法,有助于初学者的学习使用
2023/12/25 23:25:49 1.02MB 聚类算法
1
基于K-means聚类的图像分割步骤,对初学者有很好的帮助
2023/11/27 18:54:46 16KB 分割 聚类
1
K-means聚类算法c语言实现。
样本数据从文件读入,支持任意维数数据和任意k值(k当然要小于样本数),同时可以防止分出空类。
为做作业原创
2023/11/8 14:25:42 5KB k-means c-means 聚类 cluster
1
使用k-means聚类算法,使用无监督聚类算法。
2023/11/8 8:12:43 5KB 机器学习聚类
1
matlab编写的纹理图像分割gussian滤波后k-means聚类并将不同区域用线条表示出来除m程序还包括测试图片、pdf文件、ppt文件、doc文档
2023/10/8 7:18:23 2.06MB matlab 纹理分割
1
本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
共 45 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡