【DM365_NAND启动模式解析】DM365是一款由TexasInstruments(TI)生产的数字媒体处理器,常用于视频处理和嵌入式系统。
在DM365中,NAND闪存是一种常见的非易失性存储器,用于存储固件和操作系统。
NAND启动模式是指DM365在上电或复位后从NAND闪存中加载启动代码的过程。
此过程涉及一系列复杂的步骤,确保系统能够正确地从NAND中读取和执行固件。
**NAND启动流程**1.**初始化**:系统首先初始化RAM1的高2KB栈空间(0x7800-0x7fff),避免覆盖用于存储UBL块号的最后32个字节(0x7ffc-0x8000)。
2.**禁止中断**:所有中断(IRQ和FIQ)被禁用,以确保启动过程不被打断。
3.**设置DEEPSLEEPZ/GIO0**:这个外部引脚在NAND启动时必须处于高电平。
4.**读取NANDID**:读取NAND闪存的设备ID,获取设备特性,如页面大小、块大小等。
5.**初始化NAND区域**:根据NAND的参数设置控制器和寄存器。
6.**搜索UBL描述符**:RBL(ROMBootloader)在block1的page0开始搜索UBL(UserBootLoader)的描述符。
如果未找到正确的UBL,会依次检查接下来的24个块,以防遇到坏块。
7.**处理UBL描述符**:UBL描述符包含入口点地址、占用的NAND页数、起始块和起始页等信息,用于指导UBL的加载和执行。
8.**ECC错误检测和校正**:开启硬件ECC(ErrorCorrectionCode)检测,复制UBL到IRAM(InternalRAM)。
如果检测到4位ECC错误,通过ECC算法进行纠正。
如果多次失败,RBL会尝试下一个块,直到找到有效的UBL描述符,或者在搜索完24个块后转而从SD卡启动。
9.**启动UBL**:在UBL的入口点执行代码,将控制权交给UBL。
10.**安全启动模式**:根据配置,启动模式可能包括PLL旁通模式,不使用快速EMIF、DMA或I-Cache。
在其他模式下,这些功能可以被启用以提高性能。
**NANDUBLdescriptor格式**UBL描述符是一个包含关键信息的数据结构,用于指示如何加载和执行UBL。
它可能包含如下字段:-入口点地址:UBL执行的起点。
-UBL占用的NAND页数:指示UBL的大小,必须是连续的页。
-UBL的起始块和起始页:定义UBL在NAND中的位置。
-MAGICIDs:特定的标识符,用于识别不同的启动模式。
**NAND启动详细流程**1.初始化栈空间、禁止中断、设置DEEPSLEEPZ/GIO0。
2.读取NAND设备ID,初始化NAND控制器。
3.搜索UBL描述符,最多遍历24个块。
4.复制并校验UBL到IRAM,根据UBL描述符配置启动选项。
5.转交控制权给UBL执行。
NAND启动流程图和具体的ARMNANDROMBootloader实例进一步详细说明了这个过程。
此外,支持的NAND设备ID列表确保了对多种NAND闪存设备的兼容性。
DM365的NAND启动模式解析涉及了设备识别、错误检测、固件加载和执行等多个环节,确保了系统的稳定和可靠启动。
理解这一过程对于开发和调试基于DM365的嵌入式系统至关重要。
2025/5/20 16:04:21 249KB DM365
1
###TIDM36x系列DSPNANDFlash启动过程详解####一、NANDFlash启动原理#####1.1DM365支持的NAND启动特性TI的TMS320DM365(以下简称DM365)多媒体处理芯片支持多种启动方式,包括NANDFlash启动。
在NANDFlash启动过程中,DM365具有一系列独特的启动特性:1.**不支持一次性全部固件下载启动**:DM365不支持一次性将所有固件数据从NANDFlash读入内存并启动,而是采用分阶段的方式。
首先从NANDFlash读取第二级启动代码(UserBootLoader,UBL)至ARM内存(ARMInternalMemory,AIM),然后执行UBL。
2.**支持最大4KB页大小的NAND**:支持的NANDFlash页大小可达4KB,这对于大多数常见的NANDFlash设备来说是足够的。
3.**支持特殊数字标志的错误检测**:在加载UBL时会进行错误检测,尝试最多24次在不同的block中寻找特殊数字标志,以确保数据的正确性。
4.**支持30KB大小的UBL**:DM365有32KB的内存用于存放启动代码,其中2KB用于RBL(ROMBootLoader)的堆栈,剩余的空间可用来存储UBL。
5.**用户可选的DMA与I-cache支持**:用户可以根据需要在RBL执行期间启用或禁用DMA和I-cache等功能。
6.**支持4位硬件ECC**:支持每512字节需要ECC位数小于或等于4位的NANDFlash,这有助于提高数据的可靠性。
7.**支持特定的NANDFlash类型**:支持那些需要片选信号在Tr读时间保持低电平的NANDFlash。
#####1.2NANDFlash启动流程NANDFlash启动流程是指从芯片上电到Linux操作系统启动的整个过程,主要包括以下几个步骤:1.**ROMBootLoader(RBL)阶段**:当DM365芯片上电或复位时,会根据BTSEL引脚的状态确定启动方式。
如果是NAND启动,则从ROM中的RBL开始执行。
RBL会初始化必要的硬件资源,如设置堆栈,关闭中断,并读取NANDFlash的ID信息以进行适当的配置。
2.**UserBootLoader(UBL)阶段**:RBL从NANDFlash读取UBL并将其复制到AIM中运行。
UBL负责进一步初始化硬件资源,如DDR内存,并为下一阶段准备环境。
3.**U-Boot阶段**:UBL从NANDFlash读取U-Boot并将其复制到DDR内存中运行。
U-Boot是完整的启动加载程序,它负责最终从NANDFlash读取Linux内核并将其复制到DDR内存中。
4.**Linux内核启动阶段**:U-Boot启动Linux内核,内核加载并运行,此时系统完成启动。
####二、NANDFlash启动的软件配合实现#####2.1UBL描述符的实现UBL描述符是UBL读取和执行的起点。
在NANDFlash中,UBL描述符通常位于特定的位置,包含UBL的起始地址和长度等信息。
RBL通过读取这些描述符来确定UBL的具体位置并加载到AIM中。
#####2.2U-Boot启动实现U-Boot是一种开源的启动加载程序,负责从NANDFlash读取Linux内核并将其加载到内存中。
U-Boot的实现依赖于UBL提供的环境,例如已经初始化的DDR内存。
#####2.3U-Boot更新UBL和U-Boot的原理U-Boot可以被用来更新UBL和自身的代码。
这一过程通常涉及到从NANDFlash读取新的代码版本,验证其完整性,并将其替换现有的UBL或U-Boot代码。
#####2.4NANDFlash没有坏块的情况在理想情况下,即NANDFlash没有坏块的情况下,启动流程会非常顺利。
RBL能够成功地从NANDFlash读取UBL,UBL也能正确地读取U-Boot,进而完成Linux内核的加载。
####三、结束语DM365的NANDFlash启动过程是一个复杂的多阶段过程,涉及ROMBootLoader(RBL)、UserBootLoader(UBL)和U-Boot等多个组件之间的协调工作。
通过对这些组件的理解和优化,可以有效地提高启动速度和系统的稳定性。
希望本文能帮助读者更好地理解DM365的NANDFlash启动过程及其背后的技术细节。
2025/5/20 15:59:25 439KB DSP NANDflash 启动过程分析
1
目前网络上的aes代码大多数只能对8/16字节的整数倍长度数据进行加密,这个例子可以对任意长度数据进行加密(包括0字节)
1
基于单片机的曼彻斯特编码程序,功能是将一个8位的数据(一个字节)进行曼彻斯特编码曼彻斯特编码的原则是:电平从高到低跳变表示'1',电平从低到高跳变表示'0'
2025/4/19 21:50:13 86KB 曼彻斯特编码
1
简单介绍了怎么用MFC实现串口通信:串行端口的本质功能是作为CPU和串行设备间的编码转换器。
当数据从CPU经过串行端口发送出去时,字节数据转换为串行的位。
在接收数据时,串行的位被转换为字节数据。
1
字节跳动视频面试,试题记录与解析..
2025/4/15 20:21:55 8.73MB java http
1
可以查看和修改二进制文件,当然也包括文本文件。
以十六进制和文本同时显示文件内容。
可以按字节修改文件内容。
2025/4/8 11:01:02 1.99MB HEX FlexHEX 文件修改器
1
本文就简单介绍如何通过JAVA实现AES加密:/** *测试AES加密和解密 *@paramargs */ publicstaticvoidmain(String[]args){ /**数据初始化**/ Stringcontent="http://www.mbaike.net"; Stringpassword="1234567890"; /**加密(1)**/ System.out.println("加密前:"+content); byte[]encryptResult=encrypt(content,password); StringencryptResultStr=parseByte2HexStr(encryptResult); System.out.println("加密后:"+encryptResultStr); /**解密(2)**/ byte[]decryptFrom=parseHexStr2Byte(encryptResultStr); byte[]decryptResult=decrypt(decryptFrom,password); System.out.println("解密后:"+newString(decryptResult)); }}说明如下:在demo中使用了两个转换方法,及二进制转化成十六进制,和十六进制转化成二进制;
我们在AES加密的时候需要使用一个加密算的公共密钥来实现加密和解密;
加密后的字节数组不能直接转化为字符串,需要我们通过给出的两个方法转化;
1
winbox版本:v2.2.18大小:125440字节修改时间:2013年5月31日,20:47:55MD5:B0CDD3F51E01268EE3A37FD470AC4652SHA1:F08C7849D0161A3C681C7E341B04BB3AF8E3BC04CRC32:E01AA13F----------------------------------------------------------------------------------------mikrotik-6.0技术联盟①综合首发(6161279)----------------------------------------------------------------------------------------安装说明:采用官方原版6.0正式版制作IMG封包,请使用U盘PE写盘,压缩包内附批处理和工具。
附送KEY文件,方便大家使用。
2025/4/4 15:27:19 20.16MB ROS 软路由 ROS破解版
1
共 376 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡