MikaLendingBot开发人员不在办公室-社区拉取请求将被考虑MikaLendingBot用Python编写,并在交易所Poloniex和Bitfinex上具有自动借贷功能。
它将自动借出在您的借贷帐户中找到的所有加密货币。
它采用了先进的借贷策略,该策略将在借贷簿中分散报价,以利用借贷率可能出现的峰值。
受和启发。
加入讨论:-建议与开发人员进行交流建议进行重点讨论我们也有公开的,您可以随时添加您的问题或在此处获取支持!使用Waffle.io进行工作流管理文献资料产品特点每天24小时以尽可能高的利率自动将您的硬币借给Poloniex和Bitfinex。
配置您自己的借贷策略!您可以选择积极进取并坚持高利率,或者保守并经常贷款,但利率较低!能够分散您的报价以利用贷款利率飙升的能力。
预扣一定比例的硬币,直到当前利率达到一定的门槛以最大化您的利润。
可以锁定每天60天的高每日费率,这都是可配置的!存款后立即自动将您存入的所有资金(可逐个硬币配置)转移到您的借贷帐户中。
通过易于设置的网页查看您的机器人活动,状态和报告的摘要,您可
1
ZXCTN6500电信级多业务分组平台随着通信业务的快速增长,中兴通讯深入研究承载网技术的发展趋势,结合集团大客户和电信业务传送的特点,及时推出了新一代旗舰分组传送产品ZXCTN6500系列。
中兴通讯ZXCTN6500是业界首款100GE/100G信道化系列产品,采用统一交换,支持MPLS-TP分组业务和CBR(TDM等)业务的混合承载,具备多业务承载能力,支持E1,ch/CEPSTM-1/4,FE,GE,10GE,40GE,100GE/OTU4等多种业务接口,支持L1/L2/L3业务的统一高效承载和面向SDN的控制架构。
ZXCTN6500系列具有T级别超大容量、300mm深、高低速槽位分区加解耦合设计,提供全方位保护、高精度1588V2时间同步等功能,产品性能卓越。
ZXCTN6500系列产品的推出有效地解决了承载网面向IP化、带宽化、综合业务化的方向发展的技术难题。
1
免费的自动绘制刀模图软件。
拥有上百种盒型结构,只要输入简单的长宽高纸厚以及其它某些因盒型而异的必要信息后,就能自动生成完整标准的刀模图!为印前设计,刀模加工带来了很大的方便,提高效率,降低错误率!优酷视频演示http://v.youku.com/v_show/id_XNDIyNzczMDQw.html
1
基于遗传算法的TSP问题求解,附有完整matlab运行代码和结果分析,大二计算方法高分大作业。
2025/8/18 18:18:46 430KB 遗传算法 TSP matlab 大作业
1
这是一篇很好的基于MATLAB的图像处理的课程设计的论文,很适合基础不高的朋友,每个过程讲解的都很详细,而且后面配有整个设计完整的代码,我就是参照这篇论文写出自己的,感觉很有价值,希望对有需要的朋友有所帮助。
2025/8/17 18:21:03 1.77MB MATLAB 数字图像处理 论文
1
SysML,SystemModelingLanguage,系统建模语言,这抽象的名字就让人望而生畏,九种不同的模型图令初学者手足无措,学习资料的匮乏、说明书的枯燥,令许多想学习的人把SysML拒之门外。
而国外的NASA实验室、洛克希德.马丁等多家知名单位早已采用SysML进行产品设计,巴西海军甚至在某项目的招标文件中,明确提出竞标单位要使用SysML描述解决方案。
SysML究竟是什么,有何过人之处?就让我为您揭开SysML的神秘面纱。
现阶段的装备都是高复杂性大系统,装备设计制造越来越复杂,往往涉及多学科领域,如机械、电子、控制、传感器等等。
另一方面,一个项目往往由多个团队组成,不同团队和人员的
2025/8/17 18:02:07 155KB SysML简介
1
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在通信等领域有着广泛的应用前景。
本系统采用直接频率信号合成器(DDS)AD9850与STC89S52单片机相结合的方法,以AD9850为频率合成器,以单片机为进程控制和任务调度的核心,设计了一个信号发生器。
实现了输出频率在10HZ~20MHZ范围可调,输出信号频率稳定度优于10-3的正弦波、方波和三角波信号,输出信号无明显失真。
本文给出了AD9850芯片和STC89S52单片机的硬件组成原理框图、单元电路分析及软件流程,并通过严格的实测数据分析圆满完成了本设计任务。
2025/8/17 13:14:14 269KB DDS 单片机 信号发生器
1
数据结构课程设计霍夫曼编码实验报告,包含源码基本要求:一个完整的系统应具有以下功能:(1)I:初始化(Initialization)。
从终端读入字符集大小n及n个字符和m个权值,建立哈夫曼树,并将它存于文件hfmtree中。
(2)C:编码(Coding)。
利用已建好的哈夫曼树(如不在内存,则从文件hfmtree中读入),对文件tobetrans中的正文进行编码,然后将结果存入文件codefile中。
(3)D:解码(Decoding)。
利用已建好的哈夫曼树将文件codefile中的代码进行译码,结果存入文件textfile中。
(4)P:打印代码文件(Print)。
将文件codefile以紧凑格式显示在终端上,每行50个代码。
同时,将此字符形式的编码文件写入文件codeprint中。
(5)T:打印哈夫曼树(Treeprinting)。
将已在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件treeprint中。
###霍夫曼编码器知识点解析####一、霍夫曼编码基础概念**霍夫曼编码**是一种广泛应用于数据压缩领域的编码方法。
它采用了一种变长编码技术,使得出现频率高的字符可以用较短的编码表示,而出现频率低的字符则使用较长的编码表示。
这样做的好处是可以有效地减少数据的整体存储空间或传输所需的时间。
####二、霍夫曼树的构建霍夫曼树的构建是霍夫曼编码的基础。
构建过程大致分为以下几个步骤:1.**初始化**:首先读取字符集大小`n`及`n`个字符和它们的权重(出现次数),通常权重越大的字符出现的频率越高。
这部分操作可以通过用户输入或者从文件中读取完成。
2.**创建节点**:对于每一个字符及其权重,创建一个节点,该节点包含字符信息和权重信息。
这些节点可以被看作是一个优先队列,其中优先级由权重决定,权重越小的节点优先级越高。
3.**构造霍夫曼树**:不断地从优先队列中选取权重最小的两个节点作为新的节点的左右子树,并且新节点的权重等于其两个子节点的权重之和。
重复这一过程,直到所有的节点都合并成一个根节点为止,此时便得到了一棵完整的霍夫曼树。
4.**编码赋值**:从根节点开始,按照左子树为0、右子树为1的原则为每个叶子节点赋值编码。
叶子节点代表的是原始的字符集合,这样每个字符都有了一个与之对应的编码。
####三、编码与解码-**编码**:对于给定的文本,通过查找霍夫曼树中对应字符的路径,获取其霍夫曼编码,并将其替换为原文本中的字符,从而得到编码后的文件。
编码后的文件通常会比原始文件占用更少的空间。
-**解码**:解码过程则是编码过程的逆向操作。
根据霍夫曼树,从编码文件中读取编码序列,沿着霍夫曼树逐位判断,当遇到叶子节点时,即可确定对应的字符,从而恢复出原始文本。
####四、打印功能-**打印编码文件**:将编码后的文件内容以紧凑格式输出,每行50个编码。
此外,还需要将这些编码保存到另一个文件中,便于后续查看或处理。
-**打印霍夫曼树**:将霍夫曼树以直观的形式(例如树形结构或凹入表格形式)展示出来。
同时,将树的图形化表示保存到文件中,方便用户理解霍夫曼树的具体结构。
####五、实验环境搭建与运行**硬件环境**:实验中提到了具体的硬件配置,比如IntelCorei5-4258UCPU,这意味着实验是在一台具有足够计算能力的计算机上进行的。
**软件环境**:实验使用了MicrosoftVisualC++6.0进行编程。
这是一个广泛使用的C++集成开发环境(IDE),适合初学者和专业人士使用。
####六、实验过程与调试-**实验过程**:根据上述流程,可以实现霍夫曼编码器的基本功能。
在编写代码的过程中,需要注意细节处理,确保每个功能模块都能正确执行。
-**调试**:通过编写测试文档`tobetrans`,并运行程序,检查编码、解码等功能是否能够正常工作。
可以使用简单的测试用例来进行初步验证,如含有全部英文字母的文档等。
####七、实现代码示例实验报告中虽然只给出了部分代码框架,但可以想象实际的代码应该包含了霍夫曼树节点定义、霍夫曼树构建函数、编码函数、解码函数、打印函数等关键部分。
具体的实现逻辑需要结合上述理论知识进行编写。
通过上述解析,我们可以了解到霍夫曼编码器的设计思路和技术要点,这对于深入理解和应用霍夫曼编码具有重要的意义。
2025/8/17 10:34:16 78KB 霍夫曼编码
1
PowerDVD13.0.3105.58极致蓝光版(红蓝)PowerDVD功能特点:1、支持CPU/GPU硬件加速及无失真HD高传真音效技术;
2、内置DLNA服务器,轻松无线连接手机等移动设备;
3、全能播放任何视频格式都能播包含FLV、MKV、RM、RMVB(需预先于电脑中完成RealPlayer安装)、DivX、3G2、3GP…4、支持CPU/GPU硬件加速及无失真HD高传真音效技术;
5、支持播放蓝光Blu-ray3D电影;
支持视频文件2D转换3D。
最新版的PowerDVD号称拥有“全新强化的操作与播放体验”,让用户“以全新的方式探索更多媒体娱乐”
2025/8/16 8:33:25 125.8MB PowerDVD13.0.31
1
针对高光谱图像空间分辨率不足导致异常检测虚警率过高的问题,提出了一种利用主成分分析(PCA)和IHS变换融合以降低虚警率的算法。
首先对低分辨率高光谱图像进行PCA变换,提取3个主成分;
然后对这3个主成分和高分辨率图像分别进行IHS变换,得到各自的强度分量,把高光谱数据的强度分量替换成高分辨率图像的强度分量;
再运用IHS变换的可逆性,将新的强度分量与原色度分量和饱和度分量进行IHS逆变换,得到空间信息增强的高光谱图像数据;
最后使用KRX算法对空间信息增强的高光谱图像数据进行异常检测。
实验结果表明,本文算法的虚警率与KRX算法相比有很大的降低,取得了良好的检测效果。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡