针对日常生活中的行人安全问题,本文采用一种基于彩色和红外特征的多模式行人检测方法,提高行人检测的精度。
本文通过分类检测障碍物和行人区域的颜色和红外特征,设计一个多模式三焦框架,将检测得到的多模式图像特征结合在一起,促进多模式行人检测的发展。
实验结果表明,当颜色、视差和红外特征结合使用时,该方法检测性能显著提高。
1
支持任意颜色弹幕发送
2025/8/29 4:51:25 621KB 易语言 B站 Bilibili 弹幕
1
:要求用鼠标左键随机在客户区任何地方单击,可产生一个圆形的泡泡(泡泡的大小随机产生);
可通过颜色对话框选择不同的颜色,绘出不同颜色的泡泡;
可以保存文档,并能打开文档。
吹出的泡泡是透明的。
2025/8/26 13:51:27 11.89MB MFC 吹泡泡
1
Pixy是由Charmed实验室联合卡内基梅隆大学共同推出的一款图像传感器。
Pixy是一个开源的图像识别传感器,支持多物体,多色彩的颜色识别,最高支持7种颜色。
本资料包括Pixy的原理图、gerber文件、BOM表、源代码、源代码编译方法和其他说明文档。
源代码在文件夹“Pixy资料\pixy-master源代码”中。
由于CSDN只能上传小于60M的文件,所以本文档被分成两个压缩包上传,压缩包2不要资源分,请在两个压缩包都下载后在解压,否则会出错!!!
2025/8/25 4:07:11 47MB 图像识别 Pixy CMUcam5 源代码
1
**CEGUI与MFC**CEGUI(C++EnchancedGUI)是一个开源的图形用户界面库,它为游戏开发、模拟器和其他实时应用程序提供了一种灵活且可扩展的解决方案。
CEGUI提供了一套完整的组件,包括窗口、按钮、列表框等,支持多种渲染后端,如OpenGL和Direct3D,允许开发者创建出丰富的、动态的图形界面。
MFC(MicrosoftFoundationClasses)是微软提供的一个C++类库,用于构建Windows应用程序。
MFC封装了WindowsAPI,使得开发者可以使用面向对象的方式来编写Windows程序,大大简化了Windows编程的工作。
在本文中提到的“MFC重写的CEGUI界面编辑器”,是指将CEGUI的界面组件和功能与MFC框架相结合,创建了一个用于设计和编辑CEGUI布局的工具。
这种结合允许开发者利用MFC的窗口管理、事件处理和对话框功能,同时享受到CEGUI的图形用户界面灵活性和可定制性。
**LayoutEditor**“UILayoutEditor”可能是指这个界面编辑器的主程序或核心模块,它的主要功能可能是允许用户通过图形化的方式设计和预览CEGUI布局。
布局编辑器通常包含以下功能:1.**组件库**:提供各种CEGUI组件,如窗口、按钮、列表视图等,供用户拖放到设计区域。
2.**属性编辑器**:允许用户修改每个组件的属性,如大小、位置、字体、颜色等。
3.**布局管理**:支持网格布局、流式布局等多种布局方式,方便调整组件的位置和相对关系。
4.**事件绑定**:可以为组件设置事件处理器,例如点击事件、鼠标移动事件等。
5.**预览功能**:实时预览设计的界面效果,确保在实际运行时能达到预期。
6.**导出与导入**:将设计好的布局保存为XML或其他格式的文件,以便在应用程序中加载和使用。
通过MFC实现的LayoutEditor,可能还集成了MFC的文件对话框、资源管理等特性,使用户能够更方便地保存、打开和管理布局文件。
**开源优势**开源的“MFC重写的CEGUI界面编辑器”意味着代码对公众开放,开发者可以自由查看、学习、修改和分发代码。
这带来了以下好处:1.**透明度**:源代码的可见性使得任何感兴趣的开发者都能理解其工作原理。
2.**社区支持**:开源项目通常有活跃的社区,可以提供问题解答、代码贡献和持续改进。
3.**自定义性**:开发者可以根据自己的需求修改编辑器,添加特定功能。
4.**成本效益**:开源软件通常是免费的,降低了开发成本。
MFC与CEGUI的结合提供了一种强大的工具,用于设计和管理图形用户界面。
开源的“MFC重写的CEGUI界面编辑器”不仅方便了CEGUI应用的开发,也为社区的交流和创新提供了平台。
对于想要深入理解和定制GUI设计工具的开发者来说,这是一个宝贵的资源。
2025/8/25 2:42:08 101KB CEGUI LayoutEditor
1
智能小车循迹走8字是一项常见的机器人竞赛项目,它要求小车能够在设定的路径上自动行驶,形成“8”字形的轨迹。
这个过程涉及到了单片机控制、传感器技术、电机驱动以及算法设计等多个方面的知识。
下面将对这些知识点进行详细说明。
1.**单片机基础**:单片机是整个智能小车的核心,负责接收传感器信号、处理数据并控制电机运转。
这里使用的单片机可能是Arduino、STM32等常见开发平台,它们具有低功耗、高性能的特点,适合于实时控制系统。
2.**传感器技术**:智能小车通常使用颜色传感器或红外线传感器来检测路径。
颜色传感器通过识别赛道的颜色差异来确定行驶方向,红外线传感器则通过检测前方障碍物的距离辅助定位。
在“8”字走法中,传感器需要能够准确识别赛道边界,以确保小车不会偏离路线。
3.**电机驱动**:小车通常采用直流电机或者步进电机,通过电机驱动电路来控制电机的速度和方向。
电机控制器(如L298N)连接单片机,根据指令调整电机的转速和转向,使得小车能够按照预设路径行进。
4.**PID控制算法**:为了使小车能稳定跟踪路径,通常会采用PID(比例-积分-微分)控制算法。
PID算法可以实时调整电机的输出,以减小小车实际位置与目标位置的偏差,实现精准的路径跟随。
5.**轨迹识别与路径规划**:在“8”字走法中,需要预先定义好小车的行驶轨迹,这可能涉及到图像处理技术,通过对赛道的数字化表示,转化为小车可以理解和执行的指令序列。
6.**编程与调试**:编写程序实现上述功能是关键步骤。
代码需要包含初始化设置、传感器读取、PID计算、电机控制等模块。
同时,通过串口通信或LCD屏幕显示状态信息,以便于调试和优化。
7.**硬件组装与调参**:除了软件部分,硬件的组装和参数调整也至关重要。
包括传感器的安装位置、电机的扭矩和速度设置、小车的整体重量分配等,都会影响到小车的行走性能。
总结来说,智能小车循迹走8字是一个综合性的项目,它融合了单片机控制、传感器技术、电机驱动、控制算法、路径规划以及硬件设计等多个领域知识。
通过这样的实践项目,可以提升动手能力和解决问题的能力,对于学习和掌握嵌入式系统开发有着重要的意义。
2025/8/22 15:41:42 24KB
1
用Java模拟画图板,实现基本图形的绘画,并支持撤销、清空、重复功能,可提供颜色选择。


2025/8/21 17:28:20 13KB java 画图板
1
树莓派+OpenCV+Arduino实现二维码颜色识别检测与物料抓取
2025/8/20 2:29:47 339KB Arduino 树莓派 opencv 颜色识别
1
视频处理中常见的颜色空间是RGB、YUV、YIQ和YCrCb。
它们在图像显示、信号表示、数据特性分析等方面各有特点。
虽然各有不同,但可以相互转换。
(1)分离出RGB三个分量,再从RGB分别转换成YIQ,YUV、YCrCb的各个分量。
(2)分别计算YIQ,YUV、YCrCb颜色空间内三个分量图像(亮度分量、两个色度分量)之间的相关系数、每个分量图像的熵。
(3)将YIQ,YUV、YCrCb三种颜色空间之间相互转换,计算三种亮度分量之间的相关系数,计算色度分量之间的相关系数。
(4)分析并总结上述颜色转换和颜色分量的特性。
注意:本设计中不是使用Matlab自带的或者其他库函数实现颜色转换函数
1
https://atool.vip/color/产生的颜色hex码批量转换为RGB吗
2025/8/19 12:54:28 9KB 颜色码 转换
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡