非负矩阵分解的matlab代码,内容全ThisfunctionscomparestwoW'matricesfromNMF%byestimatingthepermutationandcomputingthe%normalizedLSofthepermutedmatrix
2023/6/5 6:52:45 488KB 非负矩阵分解 Matlab
1
本书主要介绍矩阵的分析及组合理论,既包括常用的概念、理论及其证明,又包含张量积、复合矩阵、矩阵扰动和非负矩阵等新内容
2023/5/15 18:24:17 30.26MB 矩阵分析 奇异值理论 Hermit 非负矩阵
1
半非负矩阵剖析算法(Semi-NMF)的源代码,算法尤为精练。
2023/3/27 6:34:42 2KB Semi-NMF matlab
1
非负矩阵分解(NonnegativeMatrixFactor),简称NMF,是由Lee和Seung于1999年在自然杂志上提出的一种矩阵分解方法[1],它使分解后的所有分量均为非负值(要求纯加性的描述),并且同时实现非线性的维数约减。
NMF已逐步成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。
2016/1/5 18:58:57 873B matlab 盲源分离 NMF
1
非负矩阵分解(NonnegativeMatrixFactor),简称NMF,是由Lee和Seung于1999年在自然杂志上提出的一种矩阵分解方法[1],它使分解后的所有分量均为非负值(要求纯加性的描述),并且同时实现非线性的维数约减。
NMF已逐步成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。
2018/2/1 4:43:58 873B matlab 盲源分离 NMF
1
本书可作为工科类研究生矩阵论教材,全书共分6章(约50学时),主要讲解矩阵的基本理论与方法,包括线性空间与线性变换,常见的矩阵分解,广义逆矩阵,矩阵分析,矩阵的直积与非负矩阵的引见等,各章配有相应的习题用作练习。
  本书也可作为理工科学生及教师的教学参考书。
第2版前言第1章线性代数引论1.1线性空间1.2线性变换及矩阵1.3Jordan标准形1.4欧氏空间和酉空间第2章矩阵的分解2.1QR分解2.2正规矩阵及Schur分解2.3满秩分解2.4奇异值分解2.5单纯矩阵的谱分解第3章矩阵的广义逆3.1广义逆矩阵3.2广义逆矩阵A+3.3A+的几种基本求法3.4广义逆与线性方程组第4章矩阵分析4.1向量与矩阵的范数4.2特征值估计4.3矩阵级数4.4矩阵函数及其计算4.5矩阵函数的应用第5章矩阵的直积5.1直积的定义与性质5.2直积与特征值5.3矩阵的拉直5.4直积与矩阵方程第6章非负矩阵引见6.1非负矩阵的基本性质6.2正矩阵与Perron定理6.3不可约非负矩阵6.4素矩阵与M矩阵6.5随机矩阵6.6两个非负矩阵模型参考文献
2020/7/12 14:09:24 2.25MB 矩阵理论
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
NMF是一种新的矩阵分解算法,它将1个非负矩阵分解为左右2个非负矩阵的乘积。
由于分解前后的矩阵中仅包含非负的元素,因而原矩阵中的列向量可以解释为对左矩阵中所有列向量(称为基向量)的加权和,而权重系数为右矩阵中对应列向量中的元素。
2016/11/15 17:43:41 2KB NMF matlab
1
压缩成两部分,这是第一部分,请下全。
线性代数和矩阵理论是数学和自然科学的基本工具,同时也是科学研究的沃土。
本书是矩阵理论方面的经典著作,从数学分析的角度阐述了矩阵分析的经典和现代方法。
主要内容有:特征值、特征向量和相似性;
酉相似和酉等价;
相似标准型和三角分解;
Hermite矩阵、对称矩阵和酉相合;
向量范数和矩阵范数;
特征值的估计和扰动;
正定矩阵和半正定矩阵;
正矩阵和非负矩阵。
第2版对第1版进行了全面的修订、更新和扩展。
这一版不仅对基础线性代数和矩阵理论做了全面的总结,而且还新增了奇异值、CS分解和Weyr标准型的相关内容,扩展了与逆矩阵和分块矩阵相关的内容,介绍了Jordan标准型的新应用。
此外,还附有1100多个问题和练习,并且给出了一些提示,以协助读者提高解决数学问题的能力。
本书可以用作本科生或者研究生的教材,也可用作数学工作者和科技人员的参考书。
名人推荐“《矩阵分析(第2版)》是矩阵分析理论的权威教程和不可或缺的参考资料。
这本书内容全面,逻辑清晰,结构严谨,阐述深刻。
不论是应用科学家、普通用户,还是有经验的研究人员,任何需要使用矩阵的人都适合阅读。
”——IlseIpsen,北卡罗莱纳州立大学“《矩阵分析》取得了巨大的成功,并且被广泛阅读和使用。
该书第2版进行了全面修订,增加了很多最近的研究成果。
它对矩阵理论和应用作出了不朽的贡献。
我很荣幸,在佐治亚州立大学的高级矩阵分析课上使用了该书第2版初稿中的几章内容。
我坚信,《矩阵分析(第2版)》将是未来多年中矩阵理论的标准本科生教材和必备参考书。
”——ZhongshanLi,佐治亚州立大学媒体推荐“《矩阵分析(第2版)》是矩阵分析理论的经典教程和不可或缺的参考资料。
这本书内容全面,逻辑清晰,结构严谨,阐述深刻。
不论是应用科学家、普通用户,还是有经验的研究人员,任何需要使用矩阵的人都适合阅读。
”——IlseIpsen,北卡罗莱纳州立大学“《矩阵分析》取得了巨大的成功,并且被广泛阅读和使用。
该书第2版进行了全面修订,增加了很多近期的研究成果。
它对矩阵理论和应用作出了不朽的贡献。
我很荣幸,在佐治亚州立大学的高级矩阵分析课上使用了该书第2版初稿中的几章内容。
我坚信,《矩阵分析(第2版)》将是未来多年中矩阵理论的标准本科生教材和参考书。
”——ZhongshanLi,佐治亚州立大学作者简介作者:[美]霍恩(RogerA.Horn)[美]约翰逊(CharlesR.Johnson)译者:无RogerA.Horn国际知名数学专家,现任美国犹他大学数学系研究教授,曾任约翰?霍普金斯大学数学系系主任,并曾任AmericanMathematicalMonthly编辑。
CharlesR.Johnson国际知名数学专家,现任美国威廉玛丽学院教授。
因其在数学科学领域的杰出贡献被授予华盛顿科学学会奖。
2015/11/3 16:55:54 47MB 矩阵分析 第2版 霍恩 Roger
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡