伪随机数产生的verilog文件LFSR
2025/2/21 3:14:06 2KB 伪随机数
1
jQuery实现简易数字摇奖程序。
实现思路:首先用random生成一个四位的随机数,转换为字符串并分割返回成数组。
利用each()遍历每一个滚动的元素,设置其backgroundPositionY来实现滚动的效果。
2025/2/11 21:31:13 104KB jquery
1
滑块验证码是一种常见的网络安全机制,用于防止自动化程序(如机器人或爬虫)对网站进行恶意操作,例如批量注册、刷票等。
它通过要求用户手动拖动一个滑块来完成图像拼接,验证用户是真实的人而非机器。
在本文中,我们将深入探讨如何使用易语言实现这样的滑块验证码。
易语言是一款国产的、面向对象的编程语言,其设计目标是让编程变得简单易学。
在易语言中实现滑块验证码涉及以下几个关键知识点:1.**图形图像处理**:你需要理解基本的图形图像处理概念,如像素操作、图像加载与保存、颜色处理等。
在易语言中,你可以使用内置的图像处理函数来创建、加载和显示图像。
2.**随机数生成**:为了增加验证码的难度,滑块的位置应是随机的。
易语言提供了生成随机数的函数,如`随机数`,可以用来确定滑块初始位置。
3.**事件驱动编程**:滑块的移动需要响应用户的鼠标事件。
易语言中的事件驱动模型使得我们可以轻松处理这些事件,如鼠标按下、移动和释放。
4.**用户界面设计**:创建一个包含滑块的窗口是必要的。
易语言提供丰富的控件库,可以构建出用户友好的界面,如图片框用于显示验证码图像,滑块控件供用户操作。
5.**图像拼接算法**:当用户移动滑块后,需要判断图像是否正确拼接。
这需要一种算法来比较原始图像和移动后的图像,确保滑块已到达正确位置。
这通常涉及到图像的裁剪、平移和比较操作。
6.**状态管理**:为了跟踪验证码的状态(如未尝试、正在验证、验证成功或失败),你需要在程序中维护一个状态变量。
易语言的变量和结构体可以帮助你实现这一点。
7.**错误处理**:在编程过程中,错误处理是非常重要的一部分。
易语言提供了异常处理机制,通过`错误捕捉`和`错误恢复`等关键字来确保程序在遇到问题时能够稳定运行。
8.**代码优化**:为了提供良好的用户体验,滑块验证码的响应速度应当尽可能快。
这可能需要优化图像处理算法,减少不必要的计算,以及合理地利用缓存。
9.**安全性**:但同样重要的是,滑块验证码应当具有一定的安全性。
虽然它不是绝对安全的,但可以通过限制验证尝试次数、设置时间间隔等方法来提高其安全性。
在实现滑块验证码时,你可以先从创建基本的图形界面开始,然后逐步添加图像处理逻辑和用户交互功能。
随着技术的深入,你还可以考虑引入更多的复杂性,如动态生成的背景、更复杂的滑块形状,甚至结合服务器端验证,进一步提高安全性。
以上就是使用易语言实现滑块验证码所需掌握的主要知识点。
通过实践,你将能熟练运用这些技能,创造出一个既实用又具有一定安全性的验证码系统。
2025/2/11 6:08:00 81KB 图形图像源码
1
%MATLAB数学建模工具箱%%本工具箱主要包含三部分内容%1.MATLAB常用数学建模工具的中文帮助%2.贡献MATLAB数学建模工具(打*号)%3.中国大学生数学建模竞赛历年试题MATLAB程序%数据拟合%interp1-一元函数插值%spline-样条插值%polyfit-多项式插值或拟合%curvefit-曲线拟合%caspe-各种边界条件的样条插值%casps-样条拟合%interp2-二元函数插值%griddata-不规则数据的二元函数插值%*interp-不单调节点插值%*lagrange-拉格朗日插值法%%方程求根%inv-逆矩阵%roots-多项式的根%fzero-一元函数零点%fsolve-非线性方程组%solve-符号方程解%*newton-牛顿迭代法解非线性方程%%微积分和微分方程%diff-差分%diff-符号导函数%trapz-梯形积分法%quad8-高精度数值积分%int-符号积分%dblquad-矩形域二重积分%ode45-常微分方程%dsolve-符号微分方程%*polyint-多项式积分法%*quadg-高斯积分法%*quad2dg-矩形域高斯二重积分%*dblquad2-非矩形域二重积分%*rk4-常微分方程RungeKutta法%%随机模拟和统计分析%max,min-最大,最小值%sum-求和%mean-均值%std-标准差%sort-排序(升序)%sortrows-按某一列排序(升序)%rand-[0,1]区间均匀分布随机数%randn-标准正态分布随机数%randperm-1...n随机排列%regress-线性回归%classify-统计聚类%*trim-坏数据祛除%*specrnd-给定分布律随机数生成%*randrow-整行随机排列%*randmix-随机置换%*chi2test-分布拟合度卡方检验%%数学规划%lp-线性规划%linprog-线性规划(在MATLAB5.3使用)%fmin-一元函数极值%fminu-多元函数极值拟牛顿法%fmins-多元函数极值单纯形搜索法%constr-非线性规划%fmincon-非线性规划(在MATLAB5.3使用)%%离散优化%*enum-枚举法%*monte-蒙特卡洛法%*lpint-线性整数规划%*L01p_e-0-1整数规划枚举法%*L01p_ie-0-1整数规划隐枚举法%*bnb18-非线性整数规划(在MATLAB5.3使用)%*bnbgui-非线性整数规划图形工具(在MATLAB5.3使用)%*mintreek-最小生成树kruskal算法%*minroute-最短路dijkstra算法%*krusk-最小生成树kruskal算法mex程序%*dijkstra-最短路dijkstra算法mex程序%*dynprog-动态规划%%%图形%plot-平面曲线(一元函数)%plot3-空间曲线%mesh-空间曲面(二元函数)%*meshf-非矩形网格图%*draw-用鼠标划光滑曲线%%中国大学生数学建模竞赛题解%jm96a-捕鱼策略%jm96b-节水洗衣机%jm96bfun-节水洗衣机优化函数%jm97a-零件参数设计%jm97afun-零件参数函数%jm97aoptim-零件参数设计优化函数%jm97b-截断切割%jm97bcount-截断切割枚举法%jm97brule-截断切割优化准则%jm98a1-风险投资模型求解%jm98a2-风险投资模型讨论%jm98a3-收益与风险非线性模型求解%jm98a3fun-收益与风险非线性模型优化函数%jm98b-灾情巡视路线(C程序)%jm99a1-自动化车床模型一%jm99a1fun-自动化车床模型目标函数%jm99a1simu-自动化车床模型随机模拟%jm99asmfun-自动化车床模型费用函数%%演示程序%fun
1
VisualBasic.NET精彩编程百例李强源代码解压后31M内容简介回到顶部↑  本书按照“实例一操作步骤一技术要点一归纳注释”的结构,介绍编写一个VisualBasic.NET程序的过程,以及编写课程中用到的知识。
本书精选了100个VisulaBasic.NET程序实例,并全部编译通过。
本书从VisualBasic.NET的各种不同应用方面来讲解如何使用VisualBasic.NET进行编程。
最后,选择3个大的综合实例详细介绍程序的开发,从而较大程度地提高读者的编程能力。
  本书以实例教程的方式编写,各部分之间独立性强,每一个实例可以作为一个单独的教程使用。
本书不仅适合初学VisualBasic.NET的读者阅读,也可以使有VisualBasic开发经验的读者获益匪浅。
由于对各方面的程序开发书中都有相应的实例,所以还可以作为一本不错的VisualBasic.NET编程开发书。
前言第一篇窗体设计及控件应用实例1你好程序实例2消息提示实例3输入对话框实例4选择按钮实例5时间日期实例6计时器控件实例7滚动条控件实例8颜色对话框实例9字体对话框实例10打开保存对话框实例11链接标签实例12编辑菜单实例13快捷菜单实例14动态菜单实例15进度条控件实例16列表框控件实例17图片框控件实例18状态栏控件.实例19立体文字实例20工具栏控件实例21组合框控件实例22系统栏图标控件实例23树视图控件实例24列表视图控件实例25选项卡控件实例26richtextbox控件实例27分割器控件实例28多窗体设计实例29多文档界面实例30日期控件第二篇数字及字符串处理实例31随机数实例32简单计算器实例33冒泡排序实例34进制转换实例35中文数字转换实例36求解方程实例37反转字符串实例38查找字符串实例39替换字符串实例40比较字符串第三篇文件操作实例41文字处理实例42创建删除文件夹实例43移动文件实例44判断文件存在与否实例45加密解密文件第四篇图形图像处理实例46使用画笔(1)实例47使用画笔(2)实例48使用画刷实例49绘制线图实例50绘制填充图形实例51直线图案实例52递归图案实例53绘制三维图形实例54模拟雪花实例55模拟绘图板实例56打开保存图像实例57剪切粘贴图像实例58浏览图片实例59变换图像实例60滤镜效果实例61统计表图形实例62百叶窗效果实例63动画效果实例64调节图像色彩实例65拾色器第五篇多媒体编程实例66mp3播放器实例67视频播放器实例68dvd播放器实例69flash播放器实例70动画播放器第六篇数据库开发实例71建立数据表实例72用access建表实例73连接access数据库实例74连接sqlserver数据库实例75绑定数据实例76数据窗体向导实例77dataview控件实例78command和datareader类的使用实例79在web中访问数据库实例80水晶报表第七篇网络编程实例81获取计算机名称实例82电话拨号程序实例83web浏览器实例84发送邮件实例85发送广播实例86聊天工具实例87sockets类的使用实例88web应用程序实例89table控件实例90自定义web控件第八篇其他应用实例91获取cpu信息实例92获取文件信息实例93打印预览实例94椭圆窗体实例95控制台程序实例96创建xml文档实例97创建xml架构第九篇综合实例实例98计算器实例99个人图书管理实例100打包发布
2025/1/28 0:33:44 7.07MB Visual Basic.NET
1
实验3继承和多态定义下述5个类,类属性如下:Employee:firstName,lastName,socialSecurityNumberSalaridEmployee:weeklySalary(周薪)HourlyEmployee:wage(每小时的工钱),hours(月工作小时数)CommisionEmployee:grossSales(销售额),commissionRate(提成比率)BasePlusCommisionEmployee:baseSalary(月基本工资)Employee类中定义了抽象方法earning,用于计算员工的月工资。
SalaridEmployee月工资计算为:weeklySalary*4HourlyEmployee月工资计算为:wage*hoursCommisionEmployee月工资计算为:grossSales*commissionRateBasePlusCommisionEmployee月工资计算为:grossSales*commissionRate+baseSalary类还应该包括构造方法,toString方法,属性的get/set方法。
firstName,lastName,socialSecurityNumber的初始化在构造方法中完成。
其中对firstName,lastName也要提供get/set方法,对socialSecurityNumber只提供get方法。
其他属性要提供get和set方法。
然后生成10个员工对象,根据随机数决定生成对象的类型(可以是SalaridEmployee、HourlyEmployee、CommisionEmployee、BasePlusCommisionEmployee),对象引用保存到数组中。
然后依次调用对象的toString方法输出对象的信息,调用earning方法来输出对象的月工资。
2025/1/17 20:14:35 3KB 北邮java作业
1
利用DES算法(包括ECB和CBC模式)加解密BMP图像GeorgeMarsaglia的“Themother”随机数生成代码,称循环周期达2^250,可以通过ts检验,适用于大规模仿真。
源码已进行类封装。
测试程序直接产生可用于matlab的m文件。
4KB matlab
1
用算法程序集(C语言描述)(第五版)+源代码第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预报校正法10.11全区间积分的哈
2025/1/9 6:30:24 156.11MB 常用算法程序集 C语言 C++ 第五版
1
MATLAB语言常用算法程序集书中4-17章代码,都是一些常用的程序第4章:插值函数名功能Language求已知数据点的拉格朗日插值多项式Atken求已知数据点的艾特肯插值多项式Newton求已知数据点的均差形式的牛顿插值多项式Newtonforward求已知数据点的前向牛顿差分插值多项式Newtonback求已知数据点的后向牛顿差分插值多项式Gauss求已知数据点的高斯插值多项式Hermite求已知数据点的埃尔米特插值多项式SubHermite求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值SecSample求已知数据点的二次样条插值多项式及其插值点处的值ThrSample1求已知数据点的第一类三次样条插值多项式及其插值点处的值ThrSample2求已知数据点的第二类三次样条插值多项式及其插值点处的值ThrSample3求已知数据点的第三类三次样条插值多项式及其插值点处的值BSample求已知数据点的第一类B样条的插值DCS用倒差商算法求已知数据点的有理分式形式的插值分式Neville用Neville算法求已知数据点的有理分式形式的插值分式FCZ用倒差商算法求已知数据点的有理分式形式的插值分式DL用双线性插值求已知点的插值DTL用二元三点拉格朗日插值求已知点的插值DH用分片双三次埃尔米特插值求插值点的z坐标第5章:函数逼近Chebyshev用切比雪夫多项式逼近已知函数Legendre用勒让德多项式逼近已知函数Pade用帕德形式的有理分式逼近已知函数lmz用列梅兹算法确定函数的最佳一致逼近多项式ZJPF求已知函数的最佳平方逼近多项式FZZ用傅立叶级数逼近已知的连续周期函数DFF离散周期数据点的傅立叶逼近SmartBJ用自适应分段线性法逼近已知函数SmartBJ用自适应样条逼近(第一类)已知函数multifit离散试验数据点的多项式曲线拟合LZXEC离散试验数据点的线性最小二乘拟合ZJZXEC离散试验数据点的正交多项式最小二乘拟合第6章:矩阵特征值计算Chapoly通过求矩阵特征多项式的根来求其特征值pmethod幂法求矩阵的主特征值及主特征向量rpmethod瑞利商加速幂法求对称矩阵的主特征值及主特征向量spmethod收缩法求矩阵全部特征值ipmethod收缩法求矩阵全部特征值dimethod位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量qrtzQR基本算法求矩阵全部特征值hessqrtz海森伯格QR算法求矩阵全部特征值rqrtz瑞利商位移QR算法求矩阵全部特征值第7章:数值微分MidPoint中点公式求取导数ThreePoint三点法求函数的导数FivePoint五点法求函数的导数DiffBSample三次样条法求函数的导数SmartDF自适应法求函数的导数CISimpson辛普森数值微分法法求函数的导数Richason理查森外推算法求函数的导数ThreePoint2三点法求函数的二阶导数FourPoint2四点法求函数的二阶导数FivePoint2五点法求函数的二阶导数Diff2BSample三次样条法求函数的二阶导数第8章:数值积分CombineTraprl复合梯形公式求积分IntSimpson用辛普森系列公式求积分NewtonCotes用牛顿-科茨系列公式求积分IntGauss用高斯公式求积分IntGaussLada用高斯拉道公式求积分IntGaussLobato用高斯—洛巴托公式求积分IntSample用三次样条插值求积分IntPWC用抛物插值求积分IntGaussLager用高斯-拉盖尔公式求积分IntGaussHermite用高斯-埃尔米特公式求积分IntQBXF1求第一类切比雪夫积分IntQBXF2求第二类切比雪夫积分DblTraprl用梯形公式求重积分DblSimpson用辛普森公式求重积分IntDBGauss用高斯公式求重积分第9章:方程求根BenvliMAX贝努利法求按模最大实根BenvliMIN贝努利法求按模最小实根HalfInterval用二分法求方程的一个根hj用黄金分割法求方程的一个根StablePoint用不动点迭代法求方程的一个根AtkenStablePoint用艾肯特加速的不动点迭代法求方程的一个根StevenStablePoint用史蒂芬森加速的不动点迭代法求方程的一个根Secant用一般弦截法求方程的一个根SinleSecant用单点弦截法求方程的一个根DblSecant用双点弦截法求方程的一个根PallSecant用平行弦截法求方程的一个根ModifSecant用改进弦截法求方程的一个根StevenSecant用史蒂芬森法求方程的一个根PYZ用劈因子法求方程的一个二次因子Parabola用抛物线法求方程的一个根QBS用钱伯斯法求方程的一个根NewtonRoot用牛顿法求方程的一个根SimpleNewton用简化牛顿法求方程的一个根NewtonDown用牛顿下山法求方程的一个根YSNewton逐次压缩牛顿法求多项式的全部实根Union1用联合法1求方程的一个根TwoStep用两步迭代法求方程的一个根Montecarlo用蒙特卡洛法求方程的一个根MultiRoot求存在重根的方程的一个重根第10章:非线性方程组求解mulStablePoint用不动点迭代法求非线性方程组的一个根mulNewton用牛顿法法求非线性方程组的一个根mulDiscNewton用离散牛顿法法求非线性方程组的一个根mulMix用牛顿-雅可比迭代法求非线性方程组的一个根mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根mulDNewton用牛顿下山法求非线性方程组的一个根mulGXF1用两点割线法的第一种形式求非线性方程组的一个根mulGXF2用两点割线法的第二种形式求非线性方程组的一个根mulVNewton用拟牛顿法求非线性方程组的一组解mulRank1用对称秩1算法求非线性方程组的一个根mulDFP用D-F-P算法求非线性方程组的一组解mulBFS用B-F-S算法求非线性方程组的一个根mulNumYT用数值延拓法求非线性方程组的一组解DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解mulFastDown用最速下降法求非线性方程组的一组解mulGSND用高斯牛顿法求非线性方程组的一组解mulConj用共轭梯度法求非线性方程组的一组解mulDamp用阻尼最小二乘法求非线性方程组的一组解第11章:解线性方程组的直接法SolveUpTriangle求上三角系数矩阵的线性方程组Ax=b的解GaussXQByOrder高斯顺序消去法求线性方程组Ax=b的解GaussXQLineMain高斯按列主元消去法求线性方程组Ax=b的解GaussXQAllMain高斯全主元消去法求线性方程组Ax=b的解GaussJordanXQ高斯-若当消去法求线性方程组Ax=b的解Crout克劳特分解法求线性方程组Ax=b的解Doolittle多利特勒分解法求线性方程组Ax=b的解SymPos1LL分解法求线性方程组Ax=b的解SymPos2LDL分解法求线性方程组Ax=b的解SymPos3改进的LDL分解法求线性方程组Ax=b的解followup追赶法求线性方程组Ax=b的解InvAddSide加边求逆法求线性方程组Ax=b的解Yesf叶尔索夫求逆法求线性方程组Ax=b的解qrxqQR分解法求线性方程组Ax=b的解第12章:解线性方程组的迭代法rs里查森迭代法求线性方程组Ax=b的解crs里查森参数迭代法求线性方程组Ax=b的解grs里查森迭代法求线性方程组Ax=b的解jacobi雅可比迭代法求线性方程组Ax=b的解gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解SOR超松弛迭代法求线性方程组Ax=b的解SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解JOR雅可比超松弛迭代法求线性方程组Ax=b的解twostep两步迭代法求线性方程组Ax=b的解fastdown最速下降法求线性方程组Ax=b的解conjgrad共轭梯度法求线性方程组Ax=b的解preconjgrad预处理共轭梯度法求线性方程组Ax=b的解BJ块雅克比迭代法求线性方程组Ax=b的解BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解BSOR块逐次超松弛迭代法求线性方程组Ax=b的解第13章:随机数生成PFQZ用平方取中法产生随机数列MixMOD用混合同余法产生随机数列MulMOD1用乘同余法1产生随机数列MulMOD2用乘同余法2产生随机数列PrimeMOD用素数模同余法产生随机数列PowerDist产生指数分布的随机数列LaplaceDist产生拉普拉斯分布的随机数列RelayDist产生瑞利分布的随机数列CauthyDist产生柯西分布的随机数列AELDist产生爱尔朗分布的随机数列GaussDist产生正态分布的随机数列WBDist产生韦伯西分布的随机数列PoisonDist产生泊松分布的随机数列BenuliDist产生贝努里分布的随机数列BGDist产生贝努里-高斯分布的随机数列TwoDist产生二项式分布的随机数列第14章:特殊函数计算gamafun用逼近法计算伽玛函数的值lngama用Lanczos算法计算伽玛函数的自然对数值Beta用伽玛函数计算贝塔函数的值gamap用逼近法计算不完全伽玛函数的值betap用逼近法计算不完全贝塔函数的值bessel用逼近法计算伽玛函数的值bessel2用逼近法计算第二类整数阶贝塞尔函数值besselm用逼近法计算变型的第一类整数阶贝塞尔函数值besselm2用逼近法计算变型的第二类整数阶贝塞尔函数值ErrFunc用高斯积分计算误差函数值SIx用高斯积分计算正弦积分值CIx用高斯积分计算余弦积分值EIx用高斯积分计算指数积分值EIx2用逼近法计算指数积分值Ellipint1用高斯积分计算第一类椭圆积分值Ellipint2用高斯积分计算第二类椭圆积分值第15章:常微分方程的初值问题DEEuler用欧拉法求一阶常微分方程的数值解DEimpEuler用隐式欧拉法求一阶常微分方程的数值解DEModifEuler用改进欧拉法求一阶常微分方程的数值解DELGKT2_mid用中点法求一阶常微分方程的数值解DELGKT2_suen用休恩法求一阶常微分方程的数值解DELGKT3_suen用休恩三阶法求一阶常微分方程的数值解DELGKT3_kuta用库塔三阶法求一阶常微分方程的数值解DELGKT4_lungkuta用经典龙格-库塔法求一阶常微分方程的数值解DELGKT4_jer用基尔法求一阶常微分方程的数值解DELGKT4_qt用变形龙格-库塔法求一阶常微分方程的数值解DELSBRK用罗赛布诺克半隐式法求一阶常微分方程的数值解DEMS用默森单步法求一阶常微分方程的数值解DEMiren用米尔恩法求一阶常微分方程的数值解DEYDS用亚当斯法求一阶常微分方程的数值解DEYCJZ_mid用中点-梯形预测校正法求一阶常微分方程的数值解DEYCJZ_adms用阿达姆斯预测校正法求一阶常微分方程的数值解DEYCJZ_adms2用密伦预测校正法求一阶常微分方程的数值解DEYCJZ_yds用亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_myds用修正的亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_hm用汉明预测校正法求一阶常微分方程的数值解DEWT用外推法求一阶常微分方程的数值解DEWT_glg用格拉格外推法求一阶常微分方程的数值解第16章:偏微分方程的数值解法peEllip5用五点差分格式解拉普拉斯方程peEllip5m用工字型差分格式解拉普拉斯方程peHypbYF用迎风格式解对流方程peHypbLax用拉克斯-弗里德里希斯格式解对流方程peHypbLaxW用拉克斯-温德洛夫格式解对流方程peHypbBW用比姆-沃明格式解对流方程peHypbRich用Richtmyer多步格式解对流方程peHypbMLW用拉克斯-温德洛夫多步格式解对流方程peHypbMC用MacCormack多步格式解对流方程peHypb2LF用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peHypb2FL用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peParabExp用显式格式解扩散方程的初值问题peParabTD用跳点格式解扩散方程的初值问题peParabImp用隐式格式解扩散方程的初边值问题peParabKN用克拉克-尼科尔森格式解扩散方程的初边值问题peParabWegImp用加权隐式格式解扩散方程的初边值问题peDKExp用指数型格式解对流扩散方程的初值问题peDKSam用萨马尔斯基格式解对流扩散方程的初值问题第17章:数据统计和分析MultiLineReg用线性回归法估计一个因变量与多个自变量之间的线性关系PolyReg用多项式回归法估计一个因变量与一个自变量之间的多项式关系CompPoly2Reg用二次完全式回归法估计一个因变量与两个自变量之间的关系CollectAnaly用最短距离算法的系统聚类对样本进行聚类DistgshAnalysis用Fisher两类判别法对样本进行分类MainAnalysis对样本进行主成分分析
2025/1/7 19:17:40 113KB matlab 算法 常用程序
1
实验内容:进程调度模拟程序:假设有10个进程需要在CPU上执行,分别用:先进先出调度算法;
基于优先数的调度算法;
最短执行时间调度算法确定这10个进程在CPU上的执行过程。
要求每次进程调度时在屏幕上显示:当前执行进程;
就绪队列;
等待队列实验目的:1)掌握处理机调度及其实现;
2)掌握进程状态及其状态转换;
3)掌握进程控制块PCB及其作用。
实验要求:1)创建10个进程的PCB,每个PCB包括:进程名、进程状态、优先级(1~10)、需要在处理机上执行的时间(ms)、队列指针等;
2)初始化10个PCB(产生随机数0或1,分别表示进程处于就绪态或等待态);
3)根据调度算法选择一个就绪进程在CPU上执行;
4)在进程执行过程中,产生随机数0或1,该随机数为1时,将等待队列中的第一个PCB加入就绪队列的对尾;
5)在进程执行过程中,产生一个随机数,表示执行进程能在处理机上执行的时间,如果随机时间大于总需要的时间,则执行完成。
如果小于,则从总时间中减去执行时间。
6)如果执行进程没有执行完成。
则产生随机数0或1,当该随机数为0时,将执行进程加入就绪队列对尾;
否则,将执行进程加入等待队列对尾;
7)一直到就绪队列为空,程序执行结束。
1
共 180 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡