全国基础地理国界和省界,精确,方便。
1
本次数据集是用于高光谱图像分类使用的indian影像数据集,该图像数据集是采用可见光与红外机载式成像光谱仪器(AVIRIS)获取的来自于印第安纳州西北部IndianPines农业试验场的高光谱图像。
用于遥感方向的研究使用。
2024/10/1 15:26:11 5.71MB 高光谱数据集
1
遥感课程设计,孟加拉洪水遥感数据分析三个时期的水系范围分析
2024/9/29 10:30:46 17.58MB 遥感
1
对于遥感领域的同志们,特别是做传感器,或是算法研究,或是遥感图像处理的,会很有帮助。
此书介绍了大气对光谱传输的影响,以及相应算法的研究。
2024/9/20 12:55:12 1.36MB 遥感原理 遥感算法 大气辐射
1
主要介绍用ENVI如何实现地物识别,以求在此过程中更好地熟悉和理解高光谱遥感图像的处理方法和步骤。
本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。
最后,我对一幅相比之下空间分辨率更高的用于军事的高光谱图像进行了部分改进的分析操作,以便比较分类效果。
2024/9/20 12:52:57 2.28MB ENVI 地物识别
1
在遥感图像的众多分割方法中,高斯混合模型(GMM)是一种常用的图像建模方法。
提出了高斯-瑞利混合模型(GRMM)可能更适合对遥感图像建模。
介绍了传统高斯混合模型和高斯-瑞利混合模型的区别。
比较了这两种混合模型对图像建模的结果,并用数据说明高斯-瑞利混合模型拟合图像的像素分布误差更小。
采用最大熵方法确定图像的最佳分类数,采用马尔可夫随机场(MRF)方法及新的势能函数完成图像的分割,采用迭代条件模型(ICM)完成分割过程中的最大后验概率计算问题。
在实验中采用了3幅遥感图像,实验过程中比较了各个图像运用高斯混合模型和高斯-瑞利混合模型的分割和拟合结果,分别通过数据和分割结果体现了该分割方法的效果。
2024/9/16 15:29:46 5.33MB 图像处理 遥感图像 高斯-瑞利 最大熵
1
基于K-means算法的遥感图像分类的matlab实现,基本没什么用
2024/9/15 18:34:50 8.61MB k-means
1
简易IDL代码,用于遥感图像的批量裁剪
2024/9/13 21:39:05 1KB IDL 裁剪图像
1
对图像用小波变换进行边缘检测,直接运行就会有六张图生成作为例子。
matlab代码,很实用,可用于遥感图像的边缘检测等等
2024/9/10 5:46:39 1KB matlab 图像边缘检测
1
针对图像的Susan角点检测算法,该代码写得非常稳健,我处理非常大的遥感图像,反复调用都不会出任何问题,相信对你有所帮助,我会及时共享我的最新代码,共同学习,共同交流,共同进步
2024/9/7 4:53:41 5KB Susan角点
1
共 312 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡