最小二乘滤波算法的基本算法是递归最小二乘算法,这种算法实际上是FIR维纳滤波器的一种时间递归实现,它是严格以最小二乘准则为依据的算法。
它的主要优点是收敛速度快,所以在快速信道均衡、实时系统辨识和时间序列分析中得到了广泛应用。
其主要缺点是每次迭代需要的运算量很大。
2025/6/4 7:51:56 32KB 最小二乘
1
Prony算法谐波分析matlab函数,已测试无误,程序使用方法及定义:function[jx,SNR,result]=myprony(x,p,dt)%实现《电网谐波与间谐波检测的分段Prony算法》郭成1%实现《现代信号处理》张贤达P122-124%实现《Prony算法在谐波、间谐波参数辨识中的应用》式(12)杨玉坤%intputx:原始数据%intputp:prony模型阶数%intputdt:采样间隔%outputjx:拟合数据%outputAm:振幅%outputQm:相位%outputam:衰减因子%outputfm:振荡频率%outputresult=[Am,Qm,am,fm]……
2025/5/26 1:30:22 2KB Prony 谐波分析 matlab
1
本程序是仿真了一个卡尔曼滤波进行系统辨识的实验,把卡尔曼的递推过程写的很清晰,便于大家更好的理解卡尔曼滤波
2025/4/25 19:49:41 823B 卡尔曼滤波 系统辨识 matlab
1
OPENCVANN(类神经网路)手写数字辨识(opencv249_ann_digital_number)资料来源:https://blog.csdn.net/cherrywish/article/details/78761411https://blog.csdn.net/qq_15947787/article/details/51385861opencv249_ann_digital_number01-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10opencv249_ann_digital_number02-彩色转灰阶imread、改变图像解析度resize、灰阶转二值化threshold、二维数据转一维数据reshape、影像数据转ML运算数据convertTo、类神经CvANN_MLP、取出ML运算结果minMaxLoc目前训练结果-128,128*2,10一亿次或10万分之一的误差为中止条件
2025/4/21 19:02:55 38.79MB 神经网路 OPENCV 手写 数字
1
递推极大似然参数辨识法MATLAB程序clearall%清理工作间变量closeall%关闭所有图形clc%清屏%%%%M序列、噪声信号产生%%%%L=1200;%四位移位积存器产生的M序列的周期y1=1;y2=1;y3=1;y4=0;%四个移位积存器的输出初始值fori=1:L;x1=xor(y3,y4);%第一个移位积存器的输入信号x2=y1;%第二个移位积存器的输入信号x3=y2;%第三个移位积存器的输入信号x4=y3;%第四个移位积存器的输入信号y(i)=y4;%第四个移位积存器的输出信号,幅值"0"和"1"ify(i)>0.5,u(i)=-1;%M序列的值为"1"时,辨识的输入信号取“-1”elseu(i)=1;%M序列的值为"0"时,辨识的输入信号取“1”endy1=x1;y2=x2;y3=x3;y4=x4;%为下一次的输入信号作准备end------
2025/4/16 16:21:31 2KB 极大似然法
1
湍流退化红外图像降晰函数辨识
2025/4/10 14:26:30 2MB 研究论文
1
用于描述遗传算法在电机控制系统中的应用,首先对数字伺服电机进行模型辨识得到其高阶模型,其次引入遗传算法,作为一种求解问题的高效全局搜索方法,能很好弥补模糊控制方法的不足。
2025/4/4 15:09:46 13.27MB 遗传算法 模糊PID 电机控制
1
线性系统子空间辨识的原书,非常经典线性系统子空间辨识的原书,非常经典
2025/4/4 6:40:05 1.22MB 子空间 辨识 线性系统
1
画出脉冲响应估计值及其三次插值曲线系统的输出与模型的输出误差也基本达到稳定状态给出了被辨识参数的个数为5时的辨识结果利用上面给出的20对输入输出数据
2025/3/23 15:21:53 1KB 梯度校正 参数辨识
1
使用面积法辨识二阶系统模型,辨识结果准确,辨识速度快。
2025/3/19 11:58:33 520B 面积法
1
共 191 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡