目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方法进行车辆型号的识别和分类展开了一系列研究:本文对当前的目标识别和分类的特征和算法做了总结和归纳。
分析比较了作为图像特征描述常见的特征算子,总结归纳了他们的提取方法、特征功能以及相互之间的关联。
另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作方法。
研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方法,以及卷积神经网络的训练方法。
分析比较不同特征学习方法的特点选取k-means作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆车型识别工作。
本文为了测试基于深度学习的车辆型号分类算法的功能在30个不同型号共7158张图片上进行实验;
并在相同数据上利用改进了的SIFT特征匹配的算法进行对比实验;
进过实验测试,深度学习方法在进行车型分类的实验中取得94%的正确率,并在与SIFT匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
2023/2/8 8:49:32 4.2MB 深度学习 车牌识别
1
这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~
2021/6/21 3:30:52 1KB matlab程序
1
这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~这是有关车型识别的matlab程序,完全可以运转~
2020/2/13 20:14:07 1KB matlab程序
1
一、课题名称:基于MATLAB的人体行为姿势识别系统二、算法介绍本课题采用差影法的方法进行人体姿势的识别。
背景差影法的原理就是:我们先在路口固定一个摄像头,将这个摄像头与电脑相连。
电脑可以把拍到的车流视频保存,然后人为截取车型图片作为背景差影法处理的对象。
这里要注意的是,我们首先要拍摄一张没有任何移动物体或者干扰的背景图,这样我们在进行背景差影法做图像处理时就可以尽量得来最理想的结果。
然后,我们把存在背景的车型图和没有任何干扰的背景图做减法,就可以很方便的得到我们需要进行识别的车的一个基本的轮廓图。
这个轮廓图才是我们最终需要的用来进行车型识别的核心。
图像差分就是对图像进行减法,我们在用背景差影法来是被车型图片的时候,必须要注意到背景随晴雨天、光强度这些随时可能发生变化的条件而该改变。
三、GUI界面设计
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡