动态神经网络是深度学习领域的一个新兴研究课题。
与静态模型在推理阶段具有固定的计算图和参数相比,动态网络可以根据不同的输入调整其结构或参数,在精度、计算效率和顺应性等方面具有显著优势。
2019/1/16 16:55:08 1.41MB 动态神经网络 综述
1
EEMD通过添加高斯白噪声并进行平均的方法,处理了EMD的模态混叠问题。
但其会因为白噪声残留较大,导致筛分次数增加,以及分解失败,因而计算效率不高。
针对以上问题,Torres等提出了一种噪声自适应完备总体平均经验模态分解(CompleteEEMDwithAdaptiveNoise,CEEMDAN)方法。
该方法特别适合ECG信号处理。
2015/1/13 21:21:28 12KB EMD CEEMDAN
1
为提髙复杂噪声环境下语音信号端点检测的准确率,提岀一种基于梅尔频谱倒谱系数(MFCC)距离的多维特征语音信号端点检测算法。
通过计算语音信号的MrcC距离,结合短时能量和短时过零率对特征距离进行修正,并更新其阈值,建立自顺应噪声模型,实现复杂噪声中语音信号端点的准确检测。
实验结果表明,与基于双限能量和基于倒谱距离的2种经典检测算法相比,在计算效率相同的条件下,该算法的检测准确率更高。
2019/1/19 6:32:11 1.23MB 频谱信号噪声
1
针对单目深度估计网络庞大的参数量和计算量,提出一种轻量金字塔解码结构的单目深度估计网络,可以在保证估计精度的情况下降低网络模型的复杂度、减少运算时间。
该网络基于编解码结构,以端到端的方式估计单目图像的深度图。
编码端使用ResNet50网络结构;
在解码端提出了一种轻量金字塔解码模块,采用深度空洞可分离卷积和分组卷积以提升感受野范围,同时减少了参数量,并且采用金字塔结构融合不同感受野下的特征图以提升解码模块的功能;
此外,在解码模块之间增加跳跃连接实现知识共享,以提升网络的估计精度。
在NYUDv2数据集上的实验结果表明,与结构注意力引导网络相比,轻量金字塔解码结构的单目深度估计网络在误差RMS的指标上降低约11.0%,计算效率提升约84.6%。
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡