MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
在雷达技术领域,MTD(MovingTargetDetection,动目标检测)算法是至关重要的一个部分,它主要用于识别在复杂背景中的移动目标。
脉冲压缩和MTD处理是雷达系统中的核心概念,它们对于提高雷达的探测性能,特别是距离分辨率和信噪比具有决定性作用。
下面我们将详细探讨这些知识点。
脉冲压缩是现代雷达系统中的一种信号处理技术。
在发射阶段,雷达发送的是宽脉冲,以获得足够的能量来覆盖远距离的目标。
然而,这样的宽脉冲会降低雷达的分辨能力。
通过使用匹配滤波器或者自相关函数,在接收端对回波信号进行处理,可以将宽脉冲转换为窄脉冲,从而显著提高距离分辨率。
脉冲压缩技术的关键在于设计合适的脉冲编码序列,例如线性调频(LFM)信号,它可以实现高时间和频率分辨率的兼顾。
接着,我们来讨论MTD算法。
MTD的目标是区分固定背景与移动目标,尤其是在复杂的雷达回波环境中。
在常规的雷达系统中,背景噪声和固定物体的回波可能会淹没微弱的移动目标信号。
MTD算法通过分析连续的雷达扫描数据,识别出在不同时间点位置有所变化的目标。
常见的MTD方法有基于数据立方体的处理、差分动目标显示(Doppler-basedMTD)以及利用多普勒频移的动目标增强技术等。
在雷达目标检测方面,MTD与脉冲压缩相结合,能够进一步提升检测效果。
例如,通过脉冲压缩提高距离分辨率,使得雷达可以更精确地定位目标;
而MTD则能帮助区分动态和静态目标,降低虚警率。
两者结合使用,不仅可以有效地检测到远处的微弱移动目标,还能提供目标的速度和方向信息。
至于雷达系统本身,它是一种利用电磁波探测目标的设备。
雷达工作时,会发射电磁波,这些波遇到物体后会反射回来,雷达接收这些回波并根据其特性(如时间延迟、频率变化等)来获取目标的距离、速度、角度等信息。
在军事、航空、气象、交通等多个领域,雷达都发挥着重要作用。
在提供的"MTD算法.txt"文件中,可能包含了关于这些概念的详细解释、仿真过程或代码实现。
通过深入研究这个文件,我们可以更深入地理解MTD算法如何在脉冲压缩的基础上进行动目标检测,以及在实际应用中如何优化雷达系统的性能。
MTD算法和脉冲压缩是雷达技术的两个关键组成部分,它们共同提升了雷达在复杂环境下的目标检测能力和精度。
通过对这两个技术的深入理解和实践,我们可以设计出更先进的雷达系统,满足各种应用场景的需求。
2025/6/23 10:32:55 3KB 脉冲压缩 雷达目标检测
1
线性输入计算器:单行线性表格计算器
2025/6/23 9:09:12 4KB C
1
具有广义未知扰动的马尔可夫跳跃线性系统的最小上界滤波器
2025/6/23 0:08:08 783KB 研究论文
1
机器学习导论课程PPT。
Chap01_绪论Chap02_模型评估与选择Chap03_线性模型Chap04_决策树Chap05_神经网络
2025/6/22 18:09:51 15.8MB 机器学习
1
这是一篇模拟电路课程设计的论文,论文中讲述了怎样通过运算电路把输入的电流信号按照指定的线性关系转换成电压信号
2025/6/22 18:54:34 165KB 电流 电压 转换
1

针对深井高应力软岩巷道围岩大变形、强流变性、强烈底鼓等非线性大变形围岩控制难题,以邢东矿-980m大巷为工程背景,现场调研-980m大巷围岩变形破坏特征,阐明了高地应力、强烈地质构造、高渗透压环境下深部巷道围岩变形机制机理,以库伦-莫尔应力圆分析了-980m大巷围岩开挖造成的高主应力差对围岩破坏作用。
在上述研究的基础上,针对性地提出了"高性能锚网喷+高强锚索+可缩性环形支架+注浆加固"的联合支护技术,并进行工业性实践。
工程实践表明,该技术可有效解决-980m大巷围岩控制难题,对类似巷道围岩控制具有借鉴意义。
2025/6/20 7:27:44 277KB
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1

【列宁伯尔尼笔记研究】的文档主要探讨了列宁哲学思想的发展和转变,特别是通过对列宁在伯尔尼时期研究黑格尔哲学的笔记的分析。
列宁的哲学思想经历了从他性镜像阅读到自主性理论空间的转换,这一转变在列宁的不同时期呈现出不同的特征。
列宁的哲学思想发展并非一蹴而就,而是有一个长期的历史进程。
从19世纪末开始,列宁的思想经历了三个主要阶段。
第一阶段是1894年至1906年,这一阶段的列宁更关注于将马克思主义哲学应用于革命实践,而非进行理论学术的研究。
第二阶段是1906年至1913年,列宁开始系统学习和研究哲学理论,深化对唯物主义和认识论的理解。
第三阶段是1914年至1916年,列宁对黑格尔的辩证法和认识论进行了深入研究,这部分内容体现在“伯尔尼笔记”中。
对于“伯尔尼笔记”的研究,传统观点往往认为列宁计划撰写一部关于唯物辩证法的学术专著,这是一种目的论的解读。
然而,这种“计划构想论”可能并不准确。
作者指出,列宁的哲学研究并非有预设的线性计划,而是随着现实斗争和理论探索的深化而自然发展的。
在这一时期,列宁对马克思主义哲学,尤其是黑格尔辩证法的深入探究,体现了他哲学思想的自主性和革命性转变。
1914年至1916年的研究中,列宁对黑格尔辩证法的思考并非单纯为了撰写学术著作,而是为了更好地理解和应用马克思主义哲学于俄国革命的实际需求。
这一时期的哲学探索反映了列宁对马克思主义哲学核心——唯物辩证法的深入认识,揭示了其思想从依赖于他人的观点向独立理论构建的转变。
在列宁的早期,他对马克思主义哲学的了解并不全面且不深入,很大程度上依赖普列汉诺夫等人的引导。
直到1908年为了反驳马赫主义,列宁才开始系统学习哲学,但那时仍未充分认识到唯物辩证法的重要性。
直至“伯尔尼笔记”时期,列宁对这一关键理论有了深刻认识,标志着其哲学思想进入了一个新的高度。
列宁的哲学思想经历了从实践应用到理论研究的转变,从对他人的依赖到自我理论构建的自主性提升,尤其是在“伯尔尼笔记”中,列宁通过深入研究黑格尔哲学,为马克思主义哲学提供了新的视角和理论深度。
这一研究对于理解列宁的哲学发展路径及其对俄国革命的影响具有重要意义。
2025/6/19 23:26:18 33KB
1

很抱歉,但根据您提供的信息,“安徽省泗县第一中学2015_2016学年高二数学上学期第三次月考试题理扫描版”是一个具体的教育资料标题,描述中并未提供任何实质性的数学知识点。
标签“课件”表明这可能是一个教学资源,但没有具体内容可供分析和解释。
部分内容只给出了数字序列12345678,这在数学中可能代表一系列的数字、坐标、序列值或等差数列的一部分,但没有上下文无法深入讨论。
为了提供有关高二数学的知识点,我可以概述一些通常在高二数学课程中涵盖的主题。
高二数学通常包括以下几个核心领域:1. **函数与方程**:学习不同类型的函数,如线性函数、二次函数、指数函数和对数函数,以及如何通过图象、解析法和代数方法解方程。
2. **不等式**:一元和多元不等式的解法,包括区间表示、数轴图解和集合符号表示。
3. **平面几何**:研究平面图形的性质,如三角形、平行四边形、梯形和圆的性质,还包括角度、周长和面积的计算。
4. **向量**:了解向量的概念,包括向量的加减、标量乘法、点积和叉积,以及它们在解决几何问题中的应用。
5. **概率统计**:基础的概率理论,包括概率的定义、加法定律、乘法定律以及独立事件的概率。
同时,也会接触到一些基本的统计概念,如平均数、中位数、众数和方差。
6. **数列与极限**:等差数列、等比数列的定义、通项公式和求和公式。
同时,会初步接触极限概念,为微积分的学习打下基础。
7. **复数**:复数的定义、运算规则,复数的极坐标表示和复数在解二次方程中的应用。
8. **圆锥曲线**:抛物线、椭圆、双曲线和圆的基本性质,以及它们的标准方程。
以上是高二数学的一些常见主题,具体知识点会根据不同的教学大纲和教材有所不同。
如果能提供更具体的问题或试卷上的内容,我可以给出更详细的解答。
2025/6/19 9:27:40 732KB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡