本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
主要介绍七种不同的离散方法SITRITFE、BE、TZ、ATZ和TSSIT方法
2023/9/16 15:48:51 1.43MB 永磁同步电机 离散化 无速度传感器
1
电压型PWM逆变器的自抗扰控制策略,详细介绍了自抗扰控制器的设计及离散化实现。
2023/8/16 17:45:19 235KB 自抗扰控制
1
控制系统的连续-离散区域的设计方法,介绍很详细
2023/6/5 18:28:31 1.19MB 产品设计
1
收缩包里有TXT以及arff两莳格式数据均已经处置竣事,也能够将数据转为其余格式,用于学习入侵检测以及收集态势感知的仿真挺不错,能够直接用weka举行约莫的分类料想。
2023/5/4 18:40:34 4.82MB kdd99数据集 网络安全 入侵检测 weka
1
罕用络续体系采样离散化方式总结,如双线性变更
2023/4/10 14:55:40 132KB 离散化
1
matlab语音除噪音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。
也就是说,课题更多的还是体现了数字信号处理技术[1]。
数字信号处理技术主要研究离散线性时不变系统,数字滤波和频谱分析是它的的两个主要分支。
数字滤波(Digitalfilter),即在形形色色的信号中提取所需信号,抑制不必要的干扰。
数字滤波器可以在时域实现也可以在频域实现,主要有两种类型;无限长冲击数字滤波器(IIR)和有限长冲击数字滤波器(FIR)。
频谱分析(SA,SpectrumAnalysis),对各种信号进行频域上的加工处理,其核心内容是快速傅里叶变换(FFT),分析的结果是一频率为坐标的各种物理量的谱线和曲线[2]。
从课题的中心来看,课题“基于MATLAB的有噪声语音信号处理”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。
作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。
这一过程的实现,用到了处理数字信号的强有力工具MATLAB[3]。
MATLAB是矩阵实验室(MatrixLaboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
它提供了功能齐全的滤波器设计,与信号处理交互式图形用户界面(Interactivegraphicaluserinterface),主要包括FDATool和SPATool两种交互式工具,其中FDATool主要用于数字滤波器设计与分析,而SPATool不仅可以设计分析滤波器,而且可以对信号进行时域与频域的分析[4]。
通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。
课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。
那么,就可以完全利用数字信号处理的知识来处理语音及加噪处理问题。
我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。
[5]
2021/8/15 16:17:31 829KB matlab
1
本书是为高年级本科生、工科硕士研究生和数学类专业学生开设的“数值分析”(数值计算方法)课程编写的教材。
其内容包括数值分析的基本概念、非线性方程求根方法、解线性方程组的直接法、线性方程组的迭代解法、数据插值方法、数据拟合与函数逼近、数值积分与数值微分、常微分方程的数值解法。
内容覆盖了国家教委工科研究生数学课程教学指导小组所制定的工科硕士生数值分析课程教学基本要求。
  教材注重理论与实践相结合,既注重数值方法理论,也注重数值试验课题引见。
特别对于数值计算中的常用方法(如迭代方法、对连续问题的离散化方法等)的应用给出了丰富的例子和数值试验。
书中每章后附有习题和数值计算的应用实例。
重视数值试验、应用实例是本书的特色之一。
  本书也可供从事科学与工程计算的工作者参考。
2017/3/16 12:55:22 1.2MB 数值分析 钟尔杰 文字版
1
几何化计算几何研究的对象是几个图形。
早期人们对于图像的研究一般都是先建立坐标系,把图形转换成函数,然后用插值和逼近的数学方法,特别是用样条函数作为工具来分析图形,取得了可喜的成功。
然而,这些方法过多地依赖于坐标系的选取,缺乏几何不变性,特别是用来处理某些大挠度曲线及曲线的奇异点等问题时,有一定的局限性。
几何图形是实际物体的抽象描述,几何化是指被研究对象本身的性质所决定的一种必然趋势。
代数化在国外,计算几何的代数化有一股很强的势头。
为了在计算机和图形显示终端表示和处理各种复杂的曲面和几何形体,需进行大量的计算,往往需要将问题代数化、线性化、离散化,特别对于最新式的全色连续色调的图像,必须对显示屏上的光栅网格点逐点进行计算扫描。
图形化随着交互式图形显示系统在CAGD中的广泛应用,计算机图形学作为新兴学科得到迅速发展。
其主要研究对象是图形的生成、变换、显示、剪取、隐藏线和隐藏面的消除、阴影色调及相应的光顺处理等。
其中剪取问题是计算机图形学的一个基本问题,剪取的关键是速度,尤其是在交互式动态显示和最新式的光扫描中。
2016/3/24 4:37:37 15.49MB 计算几何 算法与应用
1
龙格-库塔(Runge-Kutta)方法是一种在工程上使用广泛的高精度单步算法,用于数值求解微分方程。
由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。
4阶龙格库塔方法离散化Mackey_Glass时间序列,
2015/7/1 1:32:12 681B 龙格库塔方法
1
共 21 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡