超拉丁立方采样的MATLAB示例程序。
改抽样方法相较于蒙特卡洛抽样方法具有更高的效率,更快的速度,并且能够分析样本之间的相关性。
2024/12/10 7:14:12 511B MATLAB
1
我的专业工作案例可以从以下链接下载:http://pan.baidu.com/s/1dDIlXXB需要预先安装同一目录下的VB6运行环境,然后才可以安装应用程序。
安装和测试过程中有问题可以直接联系我。
中英文文本自动摘要、自动校对、自动分类、相关性与相似性聚类、主题词与标签自动生成、微博(短文本)聚类和情感分析。
我的研究成果,欢迎下载传播。
2024/11/16 0:43:18 438KB 中文文摘 中文摘要 自动摘要
1
非常快捷的风速时程模拟程序,采用Kamal谱以及谐波合成法,考虑空间相关性
2024/11/15 20:06:58 3KB matlab 风速时程
1
子带编码是以信号频谱为依据的编码方法,即将信号分解成不同频带分量来去除信号相关性,再将分量分别进行取样、量化、编码,从而得到一组互不相关的码字合并在一起后进行传输。
2024/11/2 22:18:39 2.25MB 语音信号处理 子带编码
1
包含的有变形前后图,可直接运行,运行后壳出现图形
2024/10/14 15:13:01 3.46MB Matlab
1
DetrendedFluctuationAnalysis,DFA,DFA是1994年由Peng等基于DNA机理提出的标度指数计算方法,用于分析时间序列的长程相关性。
  DFA方法的一个优点是它可以有效地滤去序列中的各阶趋势成分,能检测含有噪声且叠加有多项式趋势信号的长程相关,适合非平稳时间序列的长程幂律相关分析。
2024/10/8 5:05:56 757B matlab 医疗信号处理
1
基于MATLAB的相关性声波测距,利用产生回波,使用相关性算法计算回波距离
2024/9/12 16:36:29 2KB MATLAB 声波测距 相关性
1
引入辅助任务信息有助于立体匹配模型理解相关知识,但也会增加模型训练的复杂度。
为解决模型训练对额外标签数据的依赖问题,提出了一种利用双目图像的自相关性进行多任务学习的立体匹配算法。
该算法在多层级渐进细化过程中引入了边缘和特征一致性信息,并采用循环迭代的方式更新视差图。
根据双目图像中视差的局部平滑性和左右特征一致性构建了损失函数,在不依赖额外标签数据的情况下就可以引导模型学习边缘和特征一致性信息。
提出了一种尺度注意的空间金字塔池化,使模型能够根据局部图像特征来确定不同区域中不同尺度特征的重要性。
实验结果表明:辅助任务的引入提高了视差图精度,为视差图的可信区域提供了重要依据,在无监督学习中可用于确定单视角可见区域;在KITTI2015测试集上,所提算法的精度和运行效率均具有一定的竞争力。
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
TPC-H工具包针对数据库不同的使用场景TPC组织发布了多项测试标准。
TPC-H是决策支持的基准测试。
它由一套面向业务的即席查询和并发数据修改组成。
这些查询和填充数据库的数据具有广泛的行业相关性。
2024/8/29 9:40:05 19.71MB TPCH
1
共 99 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡