众所周知,opengl在GPU以及CPU显卡软件的各种程序编译中起着决定性的作用,很多挖矿软件亦是运用opengl的强大调动CPU或者GPU的浮点指令集合,从而实现算力提升的目标。
然而很多老旧CPU和GPU却不曾拥有这一功能,为此intel公司针对旗下的CPU扩展了sdk_for_opencl,以此解决相应问题。
软件很好用,大家可以试试,很快解决opengldrivers缺失的问题。
2025/3/30 1:23:40 68B 修复opencl Intel opencl驱动
1
vs2013+opencv2.4.9亲测可用,运动目标检测效果良好,备注详细
2025/3/29 4:19:13 5KB vibe算法
1
专用集成电路设计实用教程(第1版)》讲究实用性,希望其中的内容能帮助ASIC设计工程师清楚明了IC设计的基本概念,IC设计的流程,逻辑综合的基本概念和设计方法,解决进行IC设计时和工具使用时所遇到的问题。
  《专用集成电路设计实用教程(第1版)》共分九章,第一章概述IC设计的趋势和流程;
第二章介绍用RTL代码进行电路的高级设计和数字电路的逻辑综合;
第三章陈述了IC系统的层次化设计和模块划分;
第四章详细地说明如何设置电路的设计目标和约束;
第五章介绍综合库和静态时序分析;
第六章深入地阐述了电路的优化和优化策略;
第七章陈述物理综合和简介逻辑综合的拓扑技术;
第八章介绍可测性设计;
第九章介绍低功耗设计和分析。
  本书的主要对象是IC设计工程师,帮助他们解决IC设计和综合过程中遇到的实际问题。
也可作为高等院校相关专业的高年级学生和研究生的参考书。
2025/3/29 0:39:14 51.99MB 集成电路
1
第1章绪论第2章SAR成像原理2.1引言2.2SAR系统参数2.3单脉冲距离向处理2.4线性调频脉冲与脉冲压缩2.5SAR方位向处理2.6SAR线性测量系统2.7辐射定标2.8小结参考文献附录2A星载SAR的方位向处理第3章图像缺陷及其校正3.1引言3.2SAR成像散焦3.2.1自聚焦方法3.2.2自聚焦技术的精确性3.2.3散射体性质对自聚焦的影响3.3几何失真与辐射失真3.3.1物理原因及关联的失真3.3.2基于信号的MOCO方法3.3.3天线稳定性3.4残留SAR成像误差3.4.1残留的几何与辐射失真3.4.2旁瓣水平3.5基于信号的MOCO方法的改进3.5.1包含相位补偿的迭代自聚焦3.5.2较小失真的高频跟踪3.5.3常规方法与基于信号方法相结合的MOC0方法3.6小结参考文献第4章SAR图像的基本特性4.1引言4.2SAR图像信息的特质4.3单通道图像类型与相干斑4.4多视处理估计RCS4.5相干斑的乘性噪声模型4.6RCS估计——成像与噪声的影响4.7SAR成像模型的结果4.8空间相关性对多视处理的影响4.9系统引入空间相关性的补偿4.9.1子采样4.9.2预平均4.9.3插值4.10空间相关性估计:平稳性与空间平均4.11相干斑模型的局限性4.12多维SAR图像4.13小结参考文献第5章数据模型5.1引言5.2数据特征5.3经验数据分布5.4乘积模型5.4.1RCS模型5.4.2强度概率密度函数5.5概率分布模型的比较5.6基于有限分辨率成像的目标RCS起伏5.7数据模型的局限性5.8计算机仿真5.9小结参考文献第6章RCS重建滤波器6.1引言6.2相干斑模型和图像质量度量6.3贝叶斯重建6.4基于相干斑模型的重建6.4.1多视处理相干斑抑制6.4.2最小均方误差相干斑抑制……第7章RCS分类与分割第8章纹理信息提取第9章相关纹理第10章目标信息第11章多通道SAR数据的信息处理第12章多维SAR图像分析技术第13章SAR图像的分类第14章现状与前景分析
2025/3/28 18:57:23 36.01MB 合成孔径雷达 SAR雷达成像
1
选用背景差分法和形态学算法提取目标骨架,骨架提取经历九步:图像灰度化,背景差分法提取目标轮廓,使用CLAHE算法增强对比度,高斯滤波,Solel算子进行边缘检测,小波去噪,最大类间误差法二值化,形态学运算和中值滤波。
然后用基于人体比例的方法初步判断跌倒情况,再用基于运动趋势的精准判断跌倒情况。
算法总体效果可以,误检较少。
2025/3/28 6:38:04 3KB 行为检测
1
vlc3.0.4版本的lib文件以及头文件,dll文件可以下载该版本的安装文件,提取安装目录下面的libvlc.dll;
libvlccore.dll;以及plugings目标。
2025/3/28 5:25:17 350KB 播放器
1
对于循环介绍编程就是让事情变得动态和高效,对吧?那么,使我们的代码更高效,更动态的是循环,很大一部分!它们使我们可以遍历集合中的每个元素,例如列表。
也许我们可以通过为集合中的每个元素写一行代码来做到这一点,但这不是很有效,是吗?一点都不。
使用循环,我们可以编写一行代码,对集合中的每个元素进行操作。
太酷了吧?让我们开始吧!学习目标了解如何编写for循环查看可以使用不同的循环方式什么是for循环,我该怎么写?Python中的for循环主要用于一个列表的元素一个接一个的循环。
我们将以一个包含4个元素0,1,2,3的简单集合为例。
没有循环,如果我们要打印列表中的每个元素,就必须像下面那样将其写出:zero_to_three=[0,1,2,3]print(zero_to_three[0])print(zero_to_thr
2025/3/28 4:53:32 154KB JupyterNotebook
1
路径规划的目的是在给定起点和目标点的空间里规划出一条从起点到目标点的无碰撞路径,基于图论的经典的路径规划算法有DFS,BFS,Dijkstra,Astra,智能路径规划算法有蚁群算法,遗传算法,模糊算法等。
2025/3/28 2:06:58 1.21MB DFS BFS Dijkst Astar
1
一个架构大师必须高屋建瓴,道术结合,准确把握总体业务目标和具体技术选型。
架构的本质是系统有序化重构,适配业务发展。
业务架构/应用架构/技术架构类似生产力/生产关系/生产工具的关系,它们之间有主次,有先后。
业务架构解决系统如何理解业务的问题,过程分两步。
首先是业务定位和边界划分,对于复杂业务,还需要进一步抽象,形成共享业务域,构造基础业务平台。
应用架构解决系统如何合理拆分,微服务属于应用架构范畴,相比传统的SOA或分布式架构,它更适用复杂的业务场景(业务广度和深度复杂,业务之间存在大量共享业务逻辑)。
2025/3/27 16:50:53 1.51MB 架构 微服务 大型电商
1
目标检测NMS-GPU和Cython(非极大值抑制)在window下的编译文件,包括soft_NMS实现。
小批量情况下Cython速度高于GPU
2025/3/26 1:07:25 1.59MB 目标检测 NMS Window
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡