基本功能都实现了,不过还有些不足的地方,里面包含源码,设计说明书,使用说明书,生成的程序
2025/5/3 21:09:30 10.66MB VB.NET,图书馆管理系统
1
在IT行业中,Python是一种广泛应用的开发语言,以其简洁的语法和强大的库支持而备受青睐。
在本项目"基于Python的日照时数转太阳辐射计算"中,开发者利用Python的高效性和自动化特性,构建了一个能够快速处理日照时数数据并转换为太阳辐射值的程序。
下面我们将深入探讨这一主题,讲解相关知识点。
太阳辐射是地球表面接收到的来自太阳的能量,通常以单位面积上的能量流(如焦耳/平方米)表示。
日照时数则是衡量一个地区每天有多少时间阳光直射地面的时间长度,它是估算太阳辐射的重要参数之一。
将日照时数转化为太阳辐射值对于气象学、能源研究以及太阳能发电等领域具有重要意义。
Python中的这个项目可能使用了诸如Pandas、Numpy等数据分析库来处理和计算数据。
Pandas提供了DataFrame数据结构,方便对表格数据进行操作;
Numpy则提供了高效的数值计算功能,可以用于批量计算太阳辐射。
计算太阳辐射通常涉及以下几个步骤:1.数据预处理:读取日照时数数据,这可能来自气象站的观测记录或者卫星遥感数据。
数据预处理包括清洗数据,处理缺失值,统一格式等。
2.计算辐射系数:根据地理位置、季节、大气状况等因素,可能需要预先计算出辐射系数。
这可能涉及到一些物理公式,如林格曼系数或克劳修斯-克拉珀龙方程。
3.转换计算:利用日照时数和辐射系数,通过特定的转换公式(例如,按照国际标准ISO9060)计算每日或逐小时的太阳辐射值。
4.结果分析:将计算结果整理成可视化图表,便于分析和展示。
在`Solar_rad_conversion.py`这个文件中,我们可以预期看到上述步骤的实现。
可能包含导入相关库,定义函数来读取和处理数据,计算辐射值,以及生成图形化的结果输出。
开发者可能还考虑了错误处理和用户友好的交互界面,使得非编程背景的使用者也能方便地使用这个工具。
这个项目展示了Python在科学计算和数据分析领域的强大能力。
通过编写这样的程序,不仅可以提高数据处理效率,还能帮助研究人员和工程师更准确地评估和利用太阳能资源。
同时,这也体现了Python语言在跨学科问题解决中的灵活性和实用性。
2025/5/3 12:35:11 897B python 开发语言
1
Winfrom生成二维码源码_0520.rar
2025/5/2 9:35:58 1.31MB c#
1
根据word文档修订情况生成清单表格,可运行,非常实用。
2025/5/2 4:32:09 5KB 修订统计
1
1、网上考试的发展趋势现今,不管是国内还是国外的各大厂家,都在不断的推出一系列的考试、认证。
如微软的MCSE、Cisco的CCNA等。
我们国家的自考或是成考,以及各省市的各种考试,现在都在朝着信息化的道路前进在走。
我们相信在今后这一系列的考试将会走向网络化考试的。
这样才是符合信息发展的。
所以我们考虑这是一个机会。
我们要给不同的考试一个好的解决方案。
这个方案在技术上来讲我们是采用B/S模式。
在Windows/Linux平台上,使用IE浏览器,完成抽题、考试、交卷等考试任务。
   各考点模块通过网络获取题库,考点模块按照题库中的抽题策略,自动给每个考生生成一份试卷,考生在线作答,考试结果数据通过网络回收,系统自动进行判分,生成考试成绩和统计数据。
“在线考试系统”是集合现代考试理论、方法和现代信息技术手段的智能化网上考试系统,为学生个性化学习提供“灵活、方便、科学、公平”的“个别化考试服务”,是终结性评价系统。
学生可以随时、随地进行课程结业考试。
现阶段,学校与社会上的各种考试大都采用传统的考试方式,在此方式下,组织一次考试至少要经过五个步骤,即人工出卷,考生考试,人工阅卷,成绩评估和试卷分析。
显然,随着考试类型的不断增加及考试要求的不断提高,教师的工作量将会越来越大,并且其工作将是一件十分烦琐和非常容易出错的事情,可以说传统的考试方式已经不能适应现代考试的需要。
随着计算机应用的迅猛发展,网络应用不断扩大,如远程教育和虚拟大学的出现等等,且这些应用正逐步深入到千家万户。
人们迫切要求利用这些技术来进行在线考试,以减轻教师的工作负担及提高工作效率,与此同时也提高了考试的质量,从而使考试更趋于公证、客观、更加激发学生的学习兴趣。
例如目前许多国际著名的计算机公司所举办的各种认证考试绝大部分采用这种方式。
为了适应新形势的发展,我们推出了这一系统,使其尽快在各类考试中发挥高效,便捷的作用,把老师从繁重的工作中解脱出来
2025/5/1 14:32:48 17.79MB Java 在线考试
1
通过查找相关资料学习,自已写了一个小demo生成柱状图。
2025/5/1 12:42:35 824KB teechart 柱状图
1
Faster-RCNN在linuxtensorflowpython3.5下运行时需要的make生成文件。
2025/5/1 6:10:15 217KB Faster-RCNN Tensorflow
1
以生成工资条为例,演示了通过PageOffice开发平台,用Java语言实现Word文档的在线打开、编辑和保存,数据区域数据的动态填充和提交,数据区域插入Word文件,动态填充和提交Word文件中Tabel的数据
1
自己开发的风资源分析工具包WindAnalysis-WindAnalysis1-V1.4.1.zip本帖最后由He_Challen于2017-9-614:40编辑由于工作的原因,今年项目开始转型风电项目,在慢慢上手的过程中发现,风电所涉及的软件清一色北欧的,好不好用只有用了才知道。
因为仅是为前期风电开发做技术分析,老外的软件一个是不容易上手,二是操作复杂。
随下决心自己开发一套专门用于项目前期的风资源分析工具包。
就这样开始而一发不可收拾,从最开始的结构搭建、输出设计便沉迷此中两个月,推出的前三个版本都不太稳定,要么是兼容不好,要么是数据处理的时逻辑顺序有问题,总之在最初的三个版本在大量项目的测风数据的测试下暴漏出一堆又一堆的BUG。
说实话,中途曾想过放弃,一个人孤军奋战实在是太孤独难耐了,多年工作环境造就的内心还是比较强大的,最终还是坚持了下来。
在飞机上、动车上、出差的酒店里、办公桌前开始了一遍又一遍的调试修改,度过了一个又一个难免的夜晚。
最终完成的兼容性和稳定性都可靠的V.1.4.1版本,经反复测试没有问题后,将这个版本作为目前能完成的最终的版本发出来供同行们使用,方便工作和分析。
下面对工具包中的WindAnalysis1和WindAnalysis2的功能做个介绍,过一阵闲了编个教程发出来供大家使用。
WindAnalysis1工具包能够对获取的整个测风数据构建dateset结构体,根据时间序列进行综合整理分析,通过运行可以获得如下分析结果:a.不同高度风速、风向、温度、压强的时间序列分布图;
风速、风向、温度、压强.jpgb.整个测风数据质量判断,及质量分析图;
测风数据质量评估.jpgc.不同高度湍流强度按照风速的分布、各风速对应的湍流强度与其平均湍流强度的分布图;
湍流分布.jpgd.不同高度月平均风速分布图;
月平均风速.jpge.不同高度日平均风速分布图;
日平均风速.jpgf.不同高度风速频率分布直方图;
风频分布.jpgg.不同高度风速风向玫瑰图;
风向、风能玫瑰图.jpgh.风切变拟合和计算;
风切变拟合.jpgi.风切变系数随月分布图;
月风切变.jpgWindAnalysis2为针对特定高度H处的风资源进行详细分析,包括:a.测风时间序列上风速、湍流偏离测风周期内平均值的偏离程度;
风速、湍流时间序列分布.jpgb.风速的威布尔分布拟合和参数计算;
威布尔分布.jpgc.威布尔分布拟合的误差和相关系数R2的计算分析;
拟合误差分析.jpgd.风切变拟合和切边系数计算;
风切变拟合.jpge.指定轮毂高度处的平均风速推算及威布尔分布拟合;
轮毂高度处威布尔分布.jpgf.根据选型风机的参数,绘制功率曲线和推力系数曲线;
功率特性曲线.jpg不仅限于以上figure图文件的生成,还能够估算出指定轮毂高度hub(hub>H)测风塔处的发电量,在CommandWindow窗口中输出计算结果,作为风资源分析的参考。
计算结果.pngWindAnalysis风数据分析工具包教程-V1.4.pdfWindAnalysis1-V1.4.1.zipWindAnalysis2-V1.4.1.zip-------------------------------------------------------------------
2025/5/1 1:47:33 1.38MB matlab
1
AnyHand是编写一个视觉工具箱时的副产品,将其中的手势识别部分抽取出来做成了这个简单的手势识别库。
通过手势与计算机交互是计算机视觉交互的一个重要领域,这个库可以帮助具有一定编程能力,但没有计算机视觉背景的开发者快速地生成一个手势交互系统。
其中提供的API可以被用于图形用户界面应用程序。
只需要选取一个合适的手势模板,无需大量的模板训练就可就可以进行手势识别。
识别过程中将会实时返回您需要的手势名称、手势位置以及手势包围盒等信息,方便应用系统的调用。
在应用前请先仔细阅读系统的《安装与配置文档》、《应用文档》和《API描述文档》。
2025/4/30 18:41:40 2.69MB 手势 识别 计算机视觉
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡