基于互信息的特征选择matlab代码
2024/7/19 1:42:52 523KB 互信息 特征选择 matlab代码
1
基于二元萤火虫算法的多元生理信号特征选择与识别
2024/6/14 16:36:27 851KB 研究论文
1
蛋白质的磷酸化是重要的翻译后修饰,可激活信号通路中包括的各种酶和受体。
为了减少通过费力的实验来鉴定磷酸化位点的成本,已经积极研究了其计算预测。
在这项研究中,通过采用一组新的特征,并在通过支持向量机进行训练之前,通过随机森林在网格搜索中应用特征选择,我们的方法对两个不同的数据集实现了更好或相当的磷酸化位点预测性能。
1
完整可运行的python代码。
数据过滤,清洗,分割,特征选择,训练词向量模型,测试等等,每行都有注释,真实的数据集超过20w条,是个不错的nlp入门例子。
2024/6/2 1:43:38 79.61MB python 情感分析
1
前向回归法,求解特征选择matlab源程序。
本来是lasso模型用lars算法求解的,lars写不出来,只能用前向回归替代
2024/3/8 7:48:30 1KB 前向回归 lasso
1
特征选择DF方法实现源代码要求要先自行分好词代码中有详细注释
2024/2/15 14:47:45 4KB 特征选择 DF 源代码 信息检索
1
使用主成分分析的人脸识别,给特征空间降维,从而提高运算效率。
2023/12/25 7:12:47 3.25MB 人脸识别 特征选择 PCA
1
nmanydataanalysistasks,oneisoftenconfrontedwithveryhighdimensionaldata.Featureselectiontechniquesaredesignedtofindtherelevantfeaturesubsetoftheoriginalfeatureswhichcanfacilitateclustering,classificationandretrieval.Thefeatureselectionproblemisessentiallyacombinatorialoptimizationproblemwhichiscomputationallyexpensive.Traditionalfeatureselectionmethodsaddressthisissuebyselectingthetoprankedfeaturesbasedoncertainscorescomputedindependentlyforeachfeature.Theseapproachesneglectthepossiblecorrelationbetweendifferentfeaturesandthuscannotproduceanoptimalfeaturesubset.InspiredfromtherecentdevelopmentsonmanifoldlearningandL1-regularizedmodelsforsubsetselection,weproposehereanewapproach,called{\emMulti-Cluster/ClassFeatureSelection}(MCFS),forfeatureselection.Specifically,weselectthosefeaturessuchthatthemulti-cluster/classstructureofthedatacanbebestpreserved.Thecorrespondingoptimizationproblemcanbeefficientlysolvedsinceitonlyinvolvesasparseeigen-problemandaL1-regularizedleastsquaresproblem.ItisimportanttonotethatMCFScanbeappliedinsuperised,unsupervisedandsemi-supervisedcases.Ifyoufindthesealgoirthmsuseful,weappreciateitverymuchifyoucanciteourfollowingworks:PapersDengCai,ChiyuanZhang,XiaofeiHe,"UnsupervisedFeatureSelectionforMulti-clusterData",16thACMSIGKDDConferenceonKnowledgeDiscoveryandDataMining(KDD'10),July2010.BibtexsourceXiaofeiHe,DengCai,andParthaNiyogi,"LaplacianScoreforFeatureSelection",AdvancesinNeuralInformationProcessingSystems18(NIPS'05),Vancouver,Canada,2005Bibtexsource
2023/11/13 1:03:27 5KB featur
1
实现文本分类的主要包括几个步骤文本分词处理,特征选择,特征权重计算,文本特征向量表示,基于训练文本的特征向量数据训练SVM模型,对于测试集进行特征向量表示代入训练得到的svm模型中进行预测分类,达到93%的准确率
2023/11/8 2:28:34 26.06MB 文本分类
1
支持向量机是一个性能比较好的分类器,但直接用于做分类不一定能得到好的性能,但若能结合好的特征选择算法分类性能会大大提高,本程序就是结合我们实验室提出的特征选择方法再加上SVM得到好的结果
2023/10/13 14:16:26 26KB 基于SVM
1
共 49 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡