基于二元萤火虫算法的多元生理信号特征选择与识别
2024/6/14 16:36:27 851KB 研究论文
1
蛋白质的磷酸化是重要的翻译后修饰,可激活信号通路中包括的各种酶和受体。
为了减少通过费力的实验来鉴定磷酸化位点的成本,已经积极研究了其计算预测。
在这项研究中,通过采用一组新的特征,并在通过支持向量机进行训练之前,通过随机森林在网格搜索中应用特征选择,我们的方法对两个不同的数据集实现了更好或相当的磷酸化位点预测性能。
1
完整可运行的python代码。
数据过滤,清洗,分割,特征选择,训练词向量模型,测试等等,每行都有注释,真实的数据集超过20w条,是个不错的nlp入门例子。
2024/6/2 1:43:38 79.61MB python 情感分析
1
前向回归法,求解特征选择matlab源程序。
本来是lasso模型用lars算法求解的,lars写不出来,只能用前向回归替代
2024/3/8 7:48:30 1KB 前向回归 lasso
1
特征选择DF方法实现源代码要求要先自行分好词代码中有详细注释
2024/2/15 14:47:45 4KB 特征选择 DF 源代码 信息检索
1
使用主成分分析的人脸识别,给特征空间降维,从而提高运算效率。
2023/12/25 7:12:47 3.25MB 人脸识别 特征选择 PCA
1
nmanydataanalysistasks,oneisoftenconfrontedwithveryhighdimensionaldata.Featureselectiontechniquesaredesignedtofindtherelevantfeaturesubsetoftheoriginalfeatureswhichcanfacilitateclustering,classificationandretrieval.Thefeatureselectionproblemisessentiallyacombinatorialoptimizationproblemwhichiscomputationallyexpensive.Traditionalfeatureselectionmethodsaddressthisissuebyselectingthetoprankedfeaturesbasedoncertainscorescomputedindependentlyforeachfeature.Theseapproachesneglectthepossiblecorrelationbetweendifferentfeaturesandthuscannotproduceanoptimalfeaturesubset.InspiredfromtherecentdevelopmentsonmanifoldlearningandL1-regularizedmodelsforsubsetselection,weproposehereanewapproach,called{\emMulti-Cluster/ClassFeatureSelection}(MCFS),forfeatureselection.Specifically,weselectthosefeaturessuchthatthemulti-cluster/classstructureofthedatacanbebestpreserved.Thecorrespondingoptimizationproblemcanbeefficientlysolvedsinceitonlyinvolvesasparseeigen-problemandaL1-regularizedleastsquaresproblem.ItisimportanttonotethatMCFScanbeappliedinsuperised,unsupervisedandsemi-supervisedcases.Ifyoufindthesealgoirthmsuseful,weappreciateitverymuchifyoucanciteourfollowingworks:PapersDengCai,ChiyuanZhang,XiaofeiHe,"UnsupervisedFeatureSelectionforMulti-clusterData",16thACMSIGKDDConferenceonKnowledgeDiscoveryandDataMining(KDD'10),July2010.BibtexsourceXiaofeiHe,DengCai,andParthaNiyogi,"LaplacianScoreforFeatureSelection",AdvancesinNeuralInformationProcessingSystems18(NIPS'05),Vancouver,Canada,2005Bibtexsource
2023/11/13 1:03:27 5KB featur
1
实现文本分类的主要包括几个步骤文本分词处理,特征选择,特征权重计算,文本特征向量表示,基于训练文本的特征向量数据训练SVM模型,对于测试集进行特征向量表示代入训练得到的svm模型中进行预测分类,达到93%的准确率
2023/11/8 2:28:34 26.06MB 文本分类
1
支持向量机是一个性能比较好的分类器,但直接用于做分类不一定能得到好的性能,但若能结合好的特征选择算法分类性能会大大提高,本程序就是结合我们实验室提出的特征选择方法再加上SVM得到好的结果
2023/10/13 14:16:26 26KB 基于SVM
1
本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
共 48 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡