R软件单个率meta阐发教程,介绍在R软件中实现单个率的Meta阐发方式。
方式在R软件中加载Meta阐发法度圭表标准包,录入Meta阐发数据,用实例数据举行Meta阐发。
下场单个率资料的Meta阐发申请率的漫衍监视正态漫衍,R软件提供了四种率的转换方式。
对于实例数据举行正态性转换后举行Meta阐发,其并吞率及95%可信区间与原文不合。
论断R软件能够实现对于单个率钻研下场的Meta阐发,成果渺小,适用性强
2023/4/15 20:30:40 1.13MB R语言 单个率meta
1
商务与经济统计附录统计表格尺度正态累计漫衍表,z漫衍模子,t漫衍模子等等
2023/3/22 20:11:17 8.78MB 商务经济 统计表格
1
无线信道的路径损耗模型的仿真,具体为自在空间的损耗和正态阴影路径损耗模型。
2023/2/10 21:46:40 2KB MATLAB仿真
1
基于正态云模型,用正向正态云发生器和逆向正态云发生器来模仿花卉的部分特征提取。
2023/1/12 8:43:10 16KB 云模型 matlab
1
模仿学习此仓库包含一些强化学习算法的简单PyTorch实现:优势演员评论家(A2C)的同步变体近端策略优化(PPO)-最受欢迎的RL算法,,,策略上最大后验策略优化(V-MPO)-DeepMind在其上次工作中使用的算法(尚不起作用...)行为克隆(BC)-一种将某些专家行为克隆到新策略中的简单技术每种算法都支持向量/图像/字典观察空间和离散/连续动作空间。
为什么回购被称为“模仿学习”?当我开始这个项目并进行回购时,我认为模仿学习将是我的主要重点,并且无模型方法仅在开始时用于培训“专家”。
但是,PPO实施(及其技巧)似乎比我预期的花费了更多时间。
结果,现在大多数代码与PPO有关,但是我仍然对模仿学习感兴味,并打算添加一些相关算法。
当前功能目前,此仓库包含一些无模型的基于策略的算法实现:A2C,PPO,V-MPO和BC。
每种算法都支持离散(分类,伯努利,GumbelSoftmax)和连续(贝塔,正态,tanh(正态))策略分布以及矢量或图像观察环境。
Beta和tanh(Normal)在我的实验中效果最好(在BipedalWalker和Huma
2016/4/5 15:54:46 11.42MB
1
为提高量子粒子群算法的寻优能力,文中提出一种新的正态云模型自顺应变异量子粒子群算法。
该方法采用正态云模型优化策略,引入自身最差粒子和全局最差粒子,结合自身最优粒子和全局最优粒子自顺应调整势阱中心位置与收缩-扩张系数,每次迭代后生成的新粒子,以一定概率采用正态云模型对粒子进行变异操作。
最后标准函数极值优化的实验结果表明,该算法的单步迭代时间较长但优化能力较同类算法有大幅度提高。
1
陈希孺院士的经典书籍。
《高等数理统计学》的定位是“基于测度论的数理统计学基础教科书”,内容除预备知识外,主要是关于几种基本统计推断方式(点估计、区间估计、似设检验)的大小样本理论和方法,另有一章讲述线性模型的初步理论。
《高等数理统计学》的最大特色是习题及其提示的安排,占了近半的篇幅,其中除少量选摘自有关著作外,大半属作者自创,有很高的参考学习价值。
《高等数理统计学》可作为高等学校数理统计专业的教材,也可供相关专业人员作为参考用书。
总序序第1章预备知识1.1样本空间与样本分布族1.2统计决策理论的基本概念1.3统计量1.4统计量的充分性附录因子分解定理的证明第2章无偏估计与同变估计2.1风险一致最小的无偏估计2.2cramer-Rao不等式2.3估计的容许性2.4同变估计附录第3章Bayes估计与Minimax估计3.1Bayes估计——统计决策的观点3.2Bayes估计——统计推断的观点3.3Minimax估计第4章大样本估计4.1相合性4.2渐近正态性4.3极大似然估计4.4次序统计量第5章假设检验的优化理论5.1基本概念5.2一致最优检验5.3无偏检验5.4不变检验第6章大样本检验6.1似然比检验6.2拟合优度检验6.3条件检验、置换检验与秩检验第7章区间估计7.1求区间估计的方法7.2区间估计的优良性7.3容忍区间与容忍限7.4区间估计的其他方法和理论第8章线性统计模型8.1最小二乘估计8.2检验与区间估计8.3方差分析和协方差分析附录矩阵的广义逆习题
2021/1/9 13:54:11 20.5MB 数理统计 陈希孺
1
光谱信息预处理matalb代码,包括标准正态变换(SNV)、多元散射校正(MSC)和Savitzky-Golay卷积光滑。
2022/10/1 9:53:26 204KB SNV MSC niramf
1
海杂波统计建模(K散布、韦布尔散布、对数正态散布、指数散布、Gamma散布、高斯散布等)
2018/10/4 10:03:22 2KB matlab
1
第1周面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2周赌博设计:概率的基本概念,古典概型第3周每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4周啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)第5周万事皆由分布掌握:多维随机变量及其分布第6周砖家的统计学:随机变量的期望,方差与协方差第7周上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布第8周点数成金,从抽样推测规律之一:点估计与区间估计第9周点数成金,从抽样推测规律之二:参数估计第10周对或错?告别拍脑袋决策:基于正态总体的假设检验第11周扔掉正态分布:秩和检验第12周预测将来的技术:回归分析第13课抓住表象背后那只手:方差分析第14周沿着时间轴前进,预测电子商务业绩:时间序列分析简介
2020/3/20 13:28:41 204B 大数据 统计学
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡