本设计采用AT89S51单片机为核心来设计智能电热水器。
本设计也对单片机控制电热水器实现智能化的可能性进行了分析,利用温度传感器、水位检测装置、及模数转换器等来完成本设计。
在硬件设计方面,主要对单片机最小系统及其扩展、电源电路、键控及接口电路、模数转换电路、水位检测电路、报警电路进行了详细介绍。
2024/3/3 14:47:46 1.87MB proteus仿真 汇编语言 智能热水器
1
本文介绍了基于单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。
本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。
数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89S52来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块,和串行接口部分。
该系统从机负责数据采集并应答主机的命令。
8路被测电压通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口MAX232传输到上位机,由上位机负责数据的接受、处理和显示,并用LED数码显示器来显示所采集的结果。
软件部分应用VC++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计
2024/1/24 19:15:33 518KB 数据采集 89C52单片机
1
ADS8329Verilogfpga驱动源码,2.7V至5.5V16位1MSPS串行模数转换器ADC芯片ADS8329数据采集的verilog代码,已经用在工程中,可以做为你的设计参考。
1
修复上一次上传的版本中的一些错误和频率计算不准的问题。
附带数据手册和应用资料!STM32读取AD5933驱动测试例程,模拟IIC在STM32F103RCT6和STM32F103C8T6上测试成功!AD5933是一款高精度的阻抗转换器系统解决方案,片上集成频率发生器与12位、1MSPS的模数转换器(ADC)。
用频率发生器产生的信号来激励外部复阻抗,外部阻抗的响应信号由片上ADC进行采样,然后由片上DSP进行离散傅里叶变换(DFT)处理。
DFT算法在每个频率上返回一个实部(R)数
2023/10/29 2:08:02 2.07MB AD5933 STM32
1
ADuC7061单片机中文手册,ADuC7060/ADuC7061系列是完全集成的8kSPS、24位数据采集系统,在单芯片内集成高性能多通道-型模数转换器(ADC)、16位/32位ARM7TDMI®MCU和Flash/EE存储器。
2023/7/16 17:05:35 2.11MB ADuC7061
1
STM32L4x1高级ARM_32位MCU单片机技术手册中文资料628页完整版1文件约定2系统和内存概述3嵌入式内存(FLASH)4防火墙(FW)5功率控制(PWR)6复位和时钟控制(RCC)7通用I/O(GPIO)8系统配置控制器(SYSCFG)9外设互连矩阵10直接存储器访问控制器(DMA)11嵌套矢量中断控制器(NVIC)12扩展中断和事件控制器(EXTI)13循环冗余校验计算单元(CRC)14灵活的静态存储控制器(FSMC)15四通道SPI接口(QUADSPI)16模数转换器(ADC)17数模转换器(DAC)18电压参考缓冲器(VREFBUF)19比较器(COMP)20运算放大器(OPAMP)21Σ-Δ调制器的数字滤波器(DFSDM22触摸感应控制器(TSC)23随机数生成器(RNG)24高级控制定时器(TIM1/TIM8)25通用定时器(TIM2/TIM3/TIM4/TIM5)26通用定时器(TIM15/TIM16/TIM17)27基本定时器(TIM6/TIM7)28低功耗定时器(LPTIM)29红外线接口(IRTIM)30独立看门狗(IWDG)31系统窗口看门狗(WWDG)32实时时钟(RTC)33集成电路(I2C)接口34通用同步异步接收发射机(USART)35低功率通用异步接收发射机(LPUART)36串行外设接口(SPI)37串行音频接口(SAI)38单线协议主接口(SWPMI)39SD/SDIO/MMC卡主机接口(SDMMC)40控制器局域网(bxCAN)41调试支持(DBG)42设备电子签名43修订记录
2023/6/12 7:56:14 10.37MB STM32L4x1
1
第一章概述第二章存储器映射第三章体系配置配备枚举第四章电源管理单元(PMU)第五章功率配置配备枚举文件第六章中断抑制器第七章IO口配置配备枚举第八章管脚配置配备枚举第九章通用输入/输入口第十章通用异步收发器(UART)第十一章I2C总线接口第十二章SSP抑制器第十三章C_CAN第十四章C_CAN片上驱动第十五章16位计数器按时器第十六章32位计数器按时器第十七章看门狗按时器(WDT)第十八章体系节奏按时器第十九章模数转换器(ADC)第二十章Flash存储器编程固件第二十一章串行线调试(SWD)第二十二章ARMCortex-M0参考资料
2023/5/15 3:02:46 9.17MB lpc11c14 中文手册
1
为普及蜗杆丈量精度,方案了新的丈量机测头数据收集电路。
基于FPGA并付与自顶向下方案方式以及VerilogHDL编程本领,方案了收集电路的逻辑抑制模块。
基于AD977方案了三通道模数转换电路,每一通道由自力的模数转换器及其前端信号调解电路组成。
FPGA与前端模数转换电路以及后端数据总线之间均方案了电平转换电路。
对于所方案电路在丈量机上举行了综合噪声实际测试,下场评释所收集数据的样本尺度差均低于0.5μm,抵达了预期目的。
1
本设计的任务是设计一个峰值检测系统,其关键任务是检测峰值并保持稳定。
其框图如图所示:它由传感器、放大器、采样/保持、采样/保持控制电路、A/D(模数转换)、译码显示、数字锁存控制电路组成。
各部分的作用如下:1.传感器:把被测信号量转换成电压量。
2.放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围。
3.采样/保持:对放大后的被测模仿量进行采样,并保持峰值。
4.采样/保持控制电路:该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值。
5.A/D转换:将模仿量转换成数字量。
6.译码显示:完成峰值数字量的译码显示。
7.数字锁存控制电路:对模数转换的峰值数字量进行锁存,小于峰值的数字量不锁存。
2023/2/22 11:32:47 251KB 峰值检测 课程设计
1
主要用8086和8255,ADC0809模数转换器来实现的AD590测量的模仿量通过ADC0809转换成数字量,通过计算得出显示温度
2023/2/14 1:55:34 231KB 温度控制
1
共 28 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡