北京大学信息科学技术学院智能科学系大三课程《模式识别导论》课件作业答案集锦集锦。
基本信息:2014秋封举富老师包含书面作业,上机作业课件ppt
2025/7/14 15:31:42 12.12MB 北京大学 模式识别 课件 答案
1
模式识别-原理、方法及应用.pdf(Patterns+Recognition.pdf)一书所带的数据集及其工具。



2025/7/10 3:34:45 46.93MB 模式识别 数据集
1
模式识别的课程,第三章有设计感知器。
该代码按照书上算法而设计,可以实现分类功能。
并对算法进行了部分优化,当条件不满足时,即更新W时,就重新迭代,可以减小计算次数。
本文档一个function文件,一个是调用的M文件,最后的画图也一并给出。
2025/7/9 14:50:26 1KB MATLAB 感知器算法
1
山东大学2017年模式识别的考试题,题目很简单,供复习参考
2025/7/3 21:33:18 13KB 模式识别
1
基于halcon角点检测实现图像拼接。
例子是三张图中进行harris角点检测,然后进行匹配,模式识别,图像融合
2025/7/2 0:18:06 571KB 图像拼接 角点检测
1
齐敏等.模式识别导论.清华大学出版社,2007电子版
2025/6/28 18:23:15 8.52MB pattern recognition
1
《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
matlab实现ID3决策树代码,例程中使用西瓜数据集,运行decisionTree.m即可
2025/6/26 2:30:41 7KB matlab 模式识别 决策树
1
大学时候上《计算机视觉与模式识别》课程的时候,一个人脸morphing作业的源代码,可直接在VS2015上运行。
2025/6/24 9:47:23 25.39MB Morphing 人脸
1
国科大模式识别课程,人工智能学院开的,主讲老师:刘成林、向世明等
2025/6/6 3:47:58 785KB 模式识别 国科大
1
共 267 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡