简介:
### CAS单点登录服务器配置详解#### 一、CAS单点登录概述CAS(Central Authentication Service)是一种开放源代码的单点登录协议和服务框架,它为Web应用提供了一种简化了的身份验证流程。
通过CAS,用户只需要在一个地方完成登录过程,即可在多个应用间共享登录状态,无需重复登录。
#### 二、CAS服务器安装与配置##### 2.1 安装CAS服务端1. **下载CAS服务端**:首先从官方网址http://www.cas.org/下载最新的CAS服务端压缩包。
2. **部署WAR包**:将下载的WAR包复制到Tomcat的webapps目录下,并将其重命名为`cas.war`。
3. **启动Tomcat**:启动Tomcat服务器,自动解压WAR包,此时会在Tomcat的webapps目录下生成一个名为`cas`的文件夹。
4. **访问CAS**:通过浏览器访问`http://localhost:8896/cas`来测试CAS服务是否正常启动。
##### 2.2 配置CAS使用数据库验证为了实现更安全、更灵活的身份验证机制,我们可以配置CAS使用数据库进行用户身份验证。
具体步骤如下:1. **修改部署配置文件**:打开`cas-server-webapp\WEB-INF\deployerConfigContext.xml`文件,找到`SimpleTestUsernamePasswordAuthenticationHandler`配置项,将其替换为`QueryDatabaseAuthenticationHandler`。
```xml <bean id="authenticationHandler" class="org.jasig.cas.authentication.handler.QueryDatabaseAuthenticationHandler"> <!-- 数据库连接数据源 --> <property name="dataSource" ref="dataSource"/> <!-- 查询语句 --> <property name="sql" value="SELECT password FROM users WHERE username = ?"/> <!-- 密码加密方式 --> <property name="passwordEncoder" ref="passwordEncoder"/> </bean> ```2. **配置数据库连接**:在同一文件中添加一个新的`dataSource` bean来定义数据库连接信息。
```xml <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver"/> <property name="url" value="jdbc:mysql://localhost:3306/casdb"/> <property name="username" value="casuser"/> <property name="password" value="password"/> </bean> ```3. **配置密码加密方式**:继续在同一文件中添加`passwordEncoder` bean来指定密码加密方式,这里使用MD5作为示例。
```xml <bean id="passwordEncoder" class="org.springframework.security.crypto.password.StandardPasswordEncoder"> <constructor-arg value="MD5"/> </bean> ```4. **测试数据库验证**:重启Tomcat服务器,访问CAS服务器页面,使用数据库中的用户名和密码尝试登录,验证是否可以成功登录。
#### 三、CAS工作原理CAS的工作原理主要分为以下几个步骤:1. **用户访问服务**:用户首次访问受保护的资源时,CAS客户端会检测到HTTP请求中缺少ServiceTicket(简称ST),表明用户尚未经过身份验证。
2. **重定向至CAS服务器**:CAS客户端会将用户重定向到CAS服务器进行身份验证,并携带用户的请求URL作为参数(service参数)。
3. **用户认证**:CAS服务器接收到来自用户的认证请求后,引导用户进入登录页面。
用户输入用户名和密码进行登录,若身份验证成功,则CAS服务器通过HTTPS协议返回一个TGC(Ticket-Granting Cookie)给浏览器。
4. **发放ServiceTicket**:CAS服务器生成一个随机的ServiceTicket(简称ST),并将用户重定向回CAS客户端。
5. **验证ServiceTicket**:CAS客户端收到ST后,向CAS服务器验证ST的有效性。
如果验证通过,则允许用户访问受保护资源。
6. **传输用户信息**:CAS服务器验证ST通过后,将用户的相关认证信息发送给CAS客户端。
通过以上步骤,CAS实现了单点登录的功能,极大地提升了用户体验和系统的安全性。
### 四、CAS与HTTPS在配置CAS服务器时,可以选择使用HTTPS协议来增强通信的安全性。
如果选择HTTPS协议,则需要在服务器上配置CAS证书。
证书的创建和导入过程可以参考以下链接:[http://m.blog..net/zrk1000/article/details/51166603](http://m.blog..net/zrk1000/article/details/51166603)### 总结本文详细介绍了如何配置CAS单点登录服务,并重点讲解了如何利用Java代码实现CAS的配置,包括使用数据库进行登录验证的具体步骤。
同时,还阐述了CAS的基本工作原理,帮助读者更好地理解CAS的工作流程和技术细节。
2025/6/15 19:47:19 293KB
1
识别率的提升是图像处理技术的关键环节,笔者针对第二代曲波变换算法在图像识别处理过程中,所存在的图像边缘“振铃”效应和由于“楔形基”的特性所导致的图像失真问题,提出了第二代曲波加权改进算法及对图像识别的实现过程,并且分别通过ORL和Yale图像进行了对比仿真实验,证明了较传统的小波加权双向二维主成分分析算法在对识别中有明显的提高,从而验证了该算法在图像识别处理上的可行性和有效性。
1
提出一种用于测量微结构表面形貌的离轴显微干涉术。
该技术的实验装置为一个优化的马赫-曾德尔干涉仪。
其特点为参考波是具有一定载频的倾斜波。
该技术中应用CCD记录离轴显微干涉图,并用傅里叶变换方法对记录的干涉图在傅里叶面进行频谱滤波求解相位。
不同于经典显微干涉术,离轴显微干涉图的载频较高,仅需单幅干涉图即可得到相位信息。
因此该技术在测量中具有防振、快捷有效的特点。
利用一个标准微台阶以及微孔阵列的形貌检测结果验证该技术的有效性,同时与轮廓仪的测试结果进行对比,证明结果一致。
被测物也应用Mirau干涉显微镜进行测试,实验结果表明经典显微干涉图干涉信息载频不足,仅使用单幅干涉图不能得到正确相位,该组实验证明了离轴显微干涉术相对于传统显微干涉术的优越性。
2025/6/7 7:53:11 3.55MB 测量 表面形貌 离轴 载频
1
在当今电子商务高速发展的背景下,淘宝作为中国领先的C2C网络购物平台,汇聚了大量的商品信息和交易数据。
这些数据对于市场研究者、数据分析师以及企业家等群体而言,具有不可估量的商业价值。
通过对这些数据的分析,可以洞察消费者行为模式、市场趋势和产品流行度,进而指导产品策略和市场营销活动。
然而,淘宝网出于保护商家和消费者隐私、维护平台秩序等多种考虑,对网站数据进行了加密和反爬虫措施,这使得通过自动化手段爬取商品数据变得相对复杂。
技术的演进和数据采集需求的驱动催生了一批专业的网络爬虫工具和方法,它们可以帮助用户通过合法的途径获取淘宝商品数据。
网络爬虫是一种自动化网络数据抓取工具,能够模拟人工浏览网页的行为,自动识别网页中的特定信息,并将这些信息存储到数据库或电子表格中。
在淘宝数据爬取的过程中,用户可以通过设置特定的关键词,利用网络爬虫对淘宝商品页面进行搜索和数据提取。
这种方法可以大幅提高数据收集的效率和准确性。
关键词搜索是网络爬虫数据提取的一个重要组成部分。
在使用关键词进行搜索时,用户需要预先定义好希望获取数据的种类和范围。
例如,如果想要分析服装市场的流行趋势,就可以设定“连衣裙”、“T恤”、“休闲鞋”等关键词进行搜索。
通过精确的关键词设置,可以过滤掉大量无关的信息,确保数据的针对性和有效性。
在实际操作过程中,网络爬虫首先会模拟正常的浏览器行为向淘宝服务器发送搜索请求,服务器随后返回相应的搜索结果页面。
爬虫程序会解析这个页面,提取出包含商品信息的HTML元素,如商品名称、价格、销量、评价数量等。
提取完成后,这些数据会被整理并存储到用户指定的格式中,例如CSV或者Excel文件。
在爬取淘宝商品数据时,还需要注意遵守相关的法律法规和平台规则。
这通常意味着不能进行大规模无限制的数据抓取,以免给淘宝服务器造成不必要的负担,甚至可能因为违反服务条款而遭到封禁。
因此,建议用户合理安排爬虫的抓取频率和数据量,或者使用淘宝提供的官方API服务进行数据获取,后者通常会更加稳定和合规。
数据爬取完毕后,接下来就是数据分析的过程。
数据分析可以采用多种统计和可视化工具,如Python、R、Excel等,对爬取的数据进行深入分析。
分析内容可以包括但不限于销售趋势分析、价格分布分析、竞品比较分析等。
通过这些分析,企业能够更好地理解市场动态,消费者的需求变化,以及竞争对手的情况,从而制定更为精准的市场策略。
淘宝商品数据的爬取对于了解网络购物市场动态和消费者行为具有极为重要的意义。
但同时,从事数据爬取工作需要考虑到数据的合法性和技术的实现难度,只有在遵守规则的前提下,合理利用网络爬虫技术,才能确保获取的数据既全面又有价值。
此外,后续的数据分析工作也极为关键,它能够帮助我们从海量数据中提炼出有用的信息,并将其转化为实际的商业洞察。
2025/6/5 12:20:50 9.59MB 网络 网络 数据分析
1
SAE J1699-1-2021 是一份关于道路车辆OBD-II(On-Board Diagnostics II)验证测试程序的标准文档,由SAE(美国汽车工程师学会)发布,旨在推动汽车技术与工程科学的发展。
这个标准是自愿采用的,其适用性和对于任何特定用途的适合性,包括可能由此引发的专利侵权问题,均由使用者自行负责。


OBD-II系统是汽车诊断的一种标准,它允许技术人员通过车辆的数据端口访问和分析车辆的故障信息。
SAE J1699-1标准详细规定了如何验证这些系统是否符合规定的性能和兼容性要求。
这份2021年的更新版本是对2006年版的J1699-1标准的修订或确认,确保与当前汽车技术保持同步。


J1699-1标准的稳定化(Stabilized)状态意味着其中涵盖的技术、产品或过程已经成熟,不太可能在可预见的未来发生重大变化。
这意味着尽管这个标准被认定为稳定,但用户仍然需要定期检查参考信息,以确保技术要求的持续适用性,因为可能存在更新的技术。


此标准包含了OBD-II系统的测试步骤和程序,旨在确保车辆制造商生产的OBD-II接口能够准确、一致地报告和处理车辆的诊断信息。
这些测试可能包括但不限于通信协议一致性、故障代码设置的正确性、故障指示灯的触发条件以及数据流的准确传输。


该标准还涉及到SAE J1850,这是一个早期的通信协议,用于OBD-II系统中,用于在车辆的ECU(电子控制单元)和诊断工具之间交换信息。
J1699-1标准可能会扩展到其他通信协议,以适应现代车辆中更复杂的网络架构和更高的数据传输需求。


SAE J1699-1-2021的实施可以帮助确保车辆的排放控制系统的有效性,因为它要求OBD-II系统能够检测和报告任何可能导致排放超过法定限值的故障。
这有助于维护环境法规的执行,并促进汽车行业的技术进步和创新。


要获取这份标准的完整内容,可以联系SAE International,通过电话、传真或电子邮件下单,或者访问其官方网站进行在线购买。
同时,SAE也鼓励用户提供书面评论和建议,以帮助持续改进这些标准。
2025/5/21 22:54:09
1
###DSP伺服电机控制+PI算法####一、引言随着现代工业技术和信息技术的快速发展,交流伺服系统因其高精度和高性能而在众多伺服驱动领域得到了广泛应用。
为了满足工业应用中的需求,如快速响应速度、宽广的调速范围、高精度定位以及运行稳定性等关键性能指标,伺服电机及其驱动装置、检测单元以及控制器的设计变得尤为重要。
本文以提高交流伺服系统的性能为目标,深入探讨了基于DSP的伺服系统控制策略,并特别关注于电机定位问题。
####二、伺服系统概述伺服系统是一种闭环控制系统,其核心在于能够精确控制机械运动的位置、速度或力矩。
通常由伺服电机、驱动器、反馈传感器和控制器四大部分组成。
在现代工业生产中,伺服系统被广泛用于各种精密加工设备中,例如数控机床、机器人手臂等。
####三、无刷直流电机(BLDCM)的特点及应用无刷直流电机(BrushlessDirectCurrentMotor,BLDCM)作为一种先进的电机类型,在许多高性能伺服系统中得到广泛应用。
其优点包括效率高、寿命长、可靠性好等特点。
本文选择无刷直流电机作为执行电机,并对其结构和工作原理进行了详细分析,建立了数学模型,介绍了传递函数及其工作特性。
####四、位置检测方法在无刷直流电机中,位置检测是一项关键技术。
传统的有位置传感器方案(如霍尔传感器)存在一定的局限性,因此,本文提出了基于反电势检测法的无位置传感器技术,并进一步提出了利用最小均方误差自适应噪声抵消(LeastMeanSquaresAdaptiveNoiseCancellation,LMSANC)的方法来实现换向位置的检测,从而提高了电机在低速时的工作效率。
####五、电机定位技术电机定位是伺服系统的关键技术之一,涉及到快速性、高精度以及稳定性等多个方面。
为了提高电机的定位精度,本文采用了多种控制策略:1.**快速制动**:通过对不同制动方式的仿真分析,本文选择了回馈制动和反接制动相结合的方法,以确保制动过程的快速性。
2.**全数字闭环伺服系统**:使用TMS320LF2407DSP作为核心控制器,配合霍尔电流传感器、位置传感器和光电编码器进行信号采集和速度计算。
3.**控制算法优化**:-**电流调节环**:采用PI算法,能够保证电流的快速调节且稳态无静差。
-**速度环**:采用滑模变结构控制算法,实现了速度的实时调节和动态无超调。
-**位置控制环**:引入模糊PI(Fuzzy-PI)结合的方法,在位置偏差较大时采用模糊算法进行调节,快速减小偏差;
当偏差较小时则采用PI算法,确保系统平稳减速,达到精确停车的目的。
####六、硬件设计硬件设计是伺服系统实现的关键环节。
本文详细介绍了控制系统的整体设计思路,包括主要模块的电路设计、器件选择及参数设置等内容。
####七、软件设计软件部分采用模块化设计,包括但不限于初始化程序、中断处理程序、控制算法实现等。
文章还详细绘制了各主要功能模块的流程图,便于理解整个系统的软件架构。
####八、实验验证通过对所设计的伺服系统进行一系列实验验证,证明了其在实际应用中的可行性和有效性。
实验结果表明,该系统不仅能够实现高速响应和高精度定位,而且在稳定性方面也表现出色。
本文通过采用基于DSP的伺服系统控制策略,并结合PI算法等智能控制技术,成功地解决了电机定位问题,为提高交流伺服系统的性能提供了有效的解决方案。
2025/5/8 15:45:30 4.75MB 伺服电机控制+PI算法
1
1、微信公众号安全预案,为妥善应对和处置信息安全突发事件,确保公众号正常运行,最大限度地避免、减少和消除因网络舆情造成的各种负面影响,切实提升应对媒体的能力,营造良好的网络舆论环境,根据工作实际,特制定本预案,应急措施如下2、微信公众号运营管理规范,确保数据采编发规范性,确保数据发布内容真实有效性
1
机器人技术问世于20世纪60年代初期,自那以来,经历了那么多年的发展,取得的进步和成绩是人们有目共睹的。
本文主要研究一种六自由度机器人的轨迹规划和仿真。
首先,论文介绍了机器人的结构及基本技术参数;此外,论文对运动控制器、伺服驱动器等硬件系统做了设计,这些都是机器人控制系统所需的,还对通讯方式、上层控制软件做了介绍。
六自由度机器人的运动学分析阶段:讨论了机器人运动学的数学基础。
介绍了机器人的空间描述和坐标变换,利用Denavit和Hartenberg于1955年提出的D-H参数法来描述相邻连杆之间的坐标方向和参数,讨论了机器人逆运动学的特性。
六自由度机器人轨迹规划阶段:我们主要讨论曲线的插补操作。
插补操作的稳定性和算法优劣直接关系到机器人运行的好坏,因此对插补算法的研究是机器人研究工作中的一个不可回避的问题。
本文在关节空间与笛卡尔空间基本插补算法的基础上,提出了三次样条插补算法,并用三次样条曲线拟合机器人运动轨迹,分析了该算法的有效性和优点。
六自由度机器人仿真阶段:充分利用Matlab中的RoboticsToolbox工具箱,通过调用函数并编写程序,对机器人的运动学相关问题做了分析和计算,绘制了六自由度机器人轨迹规划曲线,建立了机器人对象模型并用工具箱提供的函数将其在三维空间中呈现出来
2025/5/3 21:57:36 4.21MB 六自由度 机器人 运动学 插补算法
1
1、matlab实现原文例子;
2、Walcott-Zak观测器虽然对系统的非线性/不确定性具有鲁棒性,但观测器设计需要满足严格的假设条件,设计参数的选取需要计算大量不等式,当系统维数较高时,往往难以实现。
在Walcott-Zak基础上,提出了一种鲁棒滑模观测器,基于设计新的控制策略,避免了Walcott-Zak观测器所必须满足的严格条件,设计参数的求取不需要求解大量方程,同时能够保证对非线性/不确定性具有鲁棒性。
通过设计滑模,可以调整观测器跟踪系统状态的收敛速度,使状态估计达到预期目标,仿真结果验证了控制策略的有效性。
1
成本计算,成本汇总,视差优化和视差优化是立体匹配的四个主要步骤。
尽管对前三个步骤进行了广泛的研究,但在视差细化方面却很少做出努力。
在这封信中,我们提出了一种彩色图像引导的视差细化方法,以进一步消除视差图上边界不一致的区域。
首先,分析边界不一致区域的起源。
然后,使用建议的基于混合超像素的策略检测这些区域。
最后,通过改进的加权中值滤波方法对检测到的边界不一致区域进行细化。
在各种立体匹配条件下的实验结果验证了该方法的有效性。
此外,通过主动深度获取获得的深度图,例如Kinect之类的设备也可以用我们提出的方法很好地完善。
2025/5/1 14:23:14 1.68MB Disparity refinement stereo matching
1
共 192 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡