1.用户管理:用户分为两种级别,一个是员工,一个是经理即系统管理员。
系统管理员能够添加、删除、修改用户信息,可以修改自己的信息。
其中员工需指定所属部门。
2.基础信息维护:管理员动态添加公司部门以及设备类型,添加的设备需指定所购入的部门和类型,同时也能够删除、修改设备信息。
3.设备维修报废管理:员工向系统管理员申请维修设备(员工只能对同部门的机器申请维修),管理员审批申请,同意或不同意。
同意的话那么设备的状态变为维修中,维修成功的话状态变为运行,维修不成功的话则对该设备进行报废申请,由管理员审批。
设备的属性需要有最后维修时间、维修次数等。
4.统计查询:员工可以查询所属部门的设备,按时间查询维修、报废申请。
系统管理员可以按部门查询申请,查询设备。
5.员工可以在管理员批复后,删除申请单,管理员批复后也可以删除申请单。
就这些功能,可能描述不太好。
员工登录后,具有的功能就是:查看设备信息以及申请信息,对设备进行维修、报废申请、修改自己的密码。
管理员的功能是查看设备信息,批复员工的的申请,还有对基础信息的维护,添加用户。
修改自己的密码。
2025/12/7 15:30:35 897KB j2ee
1
包装工作服程序包整体包含多个程序包进行项目,在每个目录中的所有程序包上运行测试覆盖率测试,最后将其连接到一个文件中,用于goveralls和codecov.io等工具。
用法和文件例子overalls-project=github.com/go-playground/overalls-covermode=count-debug然后再使用其他工具,例如goveralls-coverprofile=overalls.coverprofile-servicesemaphore-repotoken$COVERALLS_TOKEN或mvoveralls.coverprofilecoverage.txtexportCODECOV_TOKEN=###bash<(curl-shttps://codecov.io/bash)笔记:目前,goverall
2025/12/7 2:17:48 13KB coverprofile Go
1
本文详细介绍了CesiumEarth三维地形切片数据的制作过程。
首先说明了地形切片数据在三维地球中表现地表高低起伏的重要性,并推荐了地理空间数据云作为免费DEM数据的来源。
文章介绍了DEM原始数据格式(如tif、tiff、dem等)以及可用的切片工具,特别推荐了免费使用的CesiumLab。
随后分步骤讲解了CesiumLab地形切片的具体操作流程:从输入文件的选择和坐标参数设置,到处理参数的默认配置,再到输出文件的存储类型选择和目标路径指定。
最后解释了地形切片输出后的文件结构,指出系统会自动解析索引说明文件layer.json,用户只需选择地形路径即可添加图层。
整个过程清晰明了,为需要制作三维地形切片的用户提供了实用指导。
CesiumEarth是一个强大的三维地球可视化软件,广泛应用于地理信息系统和虚拟现实领域。
为了实现真实感的地形显示,三维地形切片制作是至关重要的环节。
地形切片可以展现地表高低起伏的细节,为用户提供一个生动的三维世界体验。
文章首先强调了地理空间数据的重要性,这些数据通常以DEM(数字高程模型)格式存在,如常见的tif、tiff、dem等格式。
地理空间数据云平台提供了一个获取免费DEM数据的途径。
接着,文章提到了切片工具的重要性,尤其是CesiumLab这个免费工具,它对于制作CesiumEarth所需的地形切片提供了极大的便利。
文章详细介绍了使用CesiumLab制作地形切片的流程。
第一步是准备输入文件,用户需要根据个人需求从地理空间数据云下载相应的DEM数据,并在CesiumLab中选择相应的文件。
之后,用户需要进行坐标参数的设置,确保切片能够正确地映射到地球表面上。
处理参数的默认配置提供了一个基础的起点,而用户可以根据实际情况进行调整。
输出文件的存储类型和目标路径是制作过程中需要注意的细节,确保输出文件的组织结构和存储位置符合用户的项目需求。
文章深入解释了制作完成后地形切片文件结构,这包括了各种地形数据文件和索引文件。
特别是layer.json文件,它作为一个索引文件,对各个切片文件的位置进行了说明,用户在添加图层时只需指定地形路径,系统将自动解析这个索引文件,从而完成地形的加载和显示。
整个文章提供了一个从数据获取、切片制作到地形加载的完整指导流程,对于那些想要深入研究CesiumEarth地形显示技术的开发者来说,文章中提供的信息是必不可少的。
通过这些知识,开发者能够更好地利用CesiumEarth构建出精确、细致的三维地形,大大增强了应用程序的真实感和用户体验。
对于软件开发人员而言,了解和掌握CesiumEarth地形切片制作技术不仅能够提升三维可视化项目的质量,而且能够拓宽在GIS和VR领域的应用范围。
CesiumLab等工具的使用降低了技术门槛,使得开发者能够更便捷地进行地理数据的处理和三维展示。
此外,通过实际操作,开发者还能够加深对地理数据格式、文件存储结构和数据处理流程的认识,从而在更广泛的地理信息系统项目中发挥更大的作用。
在CesiumEarth和其他三维可视化工具的帮助下,开发者得以创建出更加精确和美观的三维模型。
这些模型不仅可以用于地理探索,还能够应用于城市规划、环境监测、灾害预警等多个领域。
随着技术的进步,三维可视化工具和相关技术的应用场景还在不断扩展,对于开发者来说,深入掌握相关知识和技能显得尤为关键。
随着三维数据可视化技术的不断进步,对于高质量地形数据的需求也日益增长。
了解地形切片制作过程,掌握CesiumEarth的使用,对于那些致力于提供高质量三维地图服务和应用的开发者而言,是必不可少的基础技能。
通过这些技能,开发者能够为用户提供更加真实、直观的地理信息体验,推动相关技术在教育、科研和商业领域的创新应用。
文章详细介绍了CesiumEarth三维地形切片数据的制作过程,包括了数据的来源、格式、切片工具的使用、操作流程和文件结构的解析,为用户提供了清晰明了的实用指导。
这些内容对于准备进入三维可视化领域的开发者具有重要的参考价值,有助于他们更好地理解和掌握地形切片制作的技术细节。
2025/12/5 22:48:04 6KB 软件开发 源码
1
本文详细介绍了在GoogleEarthEngine(GEE)中提取水体边界的方法和步骤。
首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。
其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。
接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。
最后,进行后续处理以优化结果。
文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。
整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。
在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。
GoogleEarthEngine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。
利用GEE平台获取遥感影像数据是水体边界提取的第一步。
通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。
这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。
获取数据后,研究者需通过一系列图像处理技术来提取水体信息。
水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。
常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。
这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。
在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。
提取出的水体边界往往需要进一步的处理来优化结果。
边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。
这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。
为了确保水体边界的准确性,后续处理工作至关重要。
这包括影像预处理、滤波、平滑以及可能的目视检查等。
预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。
滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。
在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。
文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。
这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。
此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。
这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。
这大大降低了用户的技术门槛,提高了工作效率。
在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。
这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。
随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025/12/5 22:44:52 6KB 软件开发 源码
1
这是一个基于qt的软PLC,可以在上面编辑简单的梯形图,并且生成指令,目前可以支持的指令包括LD,LDI,LDP,LDF,OUT,RST和SET。
短路断路可以检测,但是像error.jpg那样的电路也是会出错的,一旦出现这样的错误,程序便陷入无限循环中,最后死机。
2025/12/4 5:03:05 50KB 梯形图 PLC
1
SQLPrompt是一款拥有SQL智能提示功能的SQLServer和VS插件。
SQLSearch:可以根据关键字在指定的DB和IP上查询表名,存储名,函数名等等TabHistory:罗列最后关闭时的SQL页面历史,可以快速打开
2025/12/4 2:31:30 12.75MB SQLPrompt9.0 SQLserver ssms
1
华中科技大学计算机学院计算机组成原理实验源码及报告。
含数据表示实验、运算器(ALU)实验、存储器(storage)实验、CPU实验共4次实验,以及最后的实验报告
2025/11/27 16:06:24 8.7MB 计算机组成原理
1
Terminal(终端)是一个简单的串行端口(COM)终端仿真程序。
可用于与调制解调器,路由器,嵌入式uC系统,GSM电话,GPS模块等不同设备的通信.....它是串行通信应用中非常有用的调试工具。
支持常用的300-115200bps波特率,可以在线设置各种通讯速率、奇偶校验、通讯口而无需重新启动程序。
软件能以ASCII码或十六进制接收或发送任何数据或字符,可以任意设定自动发送周期,并能将接收数据保存成文本文件,能发送任意大小的文本文件。
功能特点1、自动搜索串口,并打开串口。
2、接收数据可以进行十六进制和ASCII切换。
3、接收数据时,光标始终显示在最后一行。
4、可以以十六进制或ASCII格式,向指定串口发送数据。
2025/11/25 4:46:21 15.22MB Terminal1.9b 串口调试工具 Terminal汉化
1
实验一误差分析一、实验目的及要求1.了解误差分析对数值计算的重要性。
2.掌握避免或减小误差的基本方法。
二、实验设备安装有C、C++或MATLAB的计算机。
三、实验原理误差是指观测值与真值之差,偏差是指观测值与平均值之差。
根据不同的算法,得到的结果的精度是不一样的。
四、实验内容及步骤求方程ax2+bx+c=0的根,其中a=1,b=-(5×108+1),c=5×108采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。
//////////////////////////////实验二Lagrange插值一、实验目的及要求1.掌握利用Lagrange插值法及Newton插值法求函数值并编程实现。
2.程序具有一定的通用性,程序运行时先输入节点的个数n,然后输入各节点的值(),最后输入要求的自变量x的值,输出对应的函数值。
二、实验设备和实验环境安装有C、C++或MATLAB的计算机。
三、算法描述1.插值的基本原理(求解插值问题的基本思路)构造一个函数y=f(x)通过全部节点,即(i=0、1、…n)再用f(x)计算插值,即2.拉格朗日(Lagrange)多项式插值Lagrange插值多项式:3.牛顿(Newton)插值公式////////////////////////////////////实验三高斯消去法解方程组一、实验目的及要求1.掌握求解线性方程组的高斯消去法---列选主元在计算机上的算法实现。
2.程序具有一定的通用性,程序运行时先输入一个数n表示方程含有的未知数个数,然后输入每个线性方程的系数和常数,求出线性方程组的解。
二、实验设备和实验环境安装有C、C++或MATLAB的计算机。
三、算法描述1.高斯消去法基本思路设有方程组,设是可逆矩阵。
高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵,将其中的变换成一个上三角矩阵,然后求解这个三角形方程组。
2.利用列选主元高斯消去法求解线性方程组
1
一个人工神经元网络是由一个多层神经元结构组成,每一层神经元拥有输入(它的输入是前一层神经元的输出)和输出,我们把神经元和与之对应的神经元之间的连线用生物学的名称,叫做突触,在数学模型中每个突触有一个加权数值,称做权重,此时第i层上的某个神经元所得到的输出等于每一个权重乘以第i-1层上对应的神经元的输出之和,最后再通过激活函数来对输出进行量化,在与阈值相比较判断是否属于某一类。
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡