加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2024/11/12 20:26:46 2.14MB 加密算法
1
使用python2.7写的RSA加密解密,支持超过10^10的大素数,可以加解密大于64位的明文,注释详尽。
2024/11/9 8:58:42 7KB 网络安全 密码学 RSA
1
[实验步骤]1.预习ECB模式和CBC模式加密模式的算法。
2.写出算法流程,用程序设计语言将算法过程编程实现。
3.输入指定的明文、密钥或初始化向量,选择相应的填充模式,输出密文,验证结果。
4.自己选择不同的输入,记录输出结果。
2024/10/5 17:50:24 3KB ECB CBC 程序 代码
1
DES加结密算法,明文和密文从文件输入,明文可以是任意长字符串。
加密后的密文放在文件中。
2024/9/29 22:50:24 191KB DES加结密算法
1
electron的asar文件查看、打包、解包工具,asar文件解密加密工具在electron中,asar是个特殊的代码格式。
asar包里面包含了程序猿编写的代码逻辑。
默认情况下,这些代码逻辑,是放置在resource/app目录下面的,明文可见,这样的话,也就有了代码加密。
electron用到一种asar的打包文件格式,压缩工具都不支持这个,只能在node.js的命令行里搞,不能直接查看文件列表,不能编辑,很不方便。
2024/9/15 20:11:54 422KB asar打包解包 asar加密解密
1
DES算法为密码体制中的对称密码体制,明文按64位进行分组,密钥长64位,分组后的明文组和密钥按位替代或者交换的方法进行16轮加密,得到64位的密文串的加密方法。
特此整理一份数据测试表模板供大家下载使用。
199KB DES
1
SecretView星号密码查看器,仅能查看一般软件明文星号密码。
内附源码,仅供大家学习交流。
1
csdn找了半天没有直接可以用的代码。
这个压缩包解开放一个文件夹可以直接用。
直接在command里面输入[s_box,inv_s_box,w,poly_mat,inv_poly_mat]=aes_init;2plaintext_hex={’00’’11’’22’’33’’44’’55’’66’’77’...3’88’’99’’aa’’bb’’cc’’dd’’ee’’ff’};4plaintext=hex2dec(plaintext_hex);5ciphertext=cipher(plaintext,w,s_box,poly_mat);6re_plaintext=inv_cipher(ciphertext,w,inv_s_box,inv_poly_mat);plaintext明文cipehertext密文re_plaintext解密key在aes_init修改实测可用
2024/6/29 0:57:23 4KB matlab AES
1
对称密码技术高级加密标准算法(AES)易于软件实现和硬件实现,并且具有加密速度快、内存消耗小、抵抗多种人为攻击、操作简单等优越性。
非对称密码技术椭圆曲线加密(ECC)是基于离散对数难题的,这使得对于相同长度的密钥来说,ECC加密更快、破解难度更大。
本文实现了128位密钥的AES算法,将原来的四步加密过程整合为两步,通过CBC或ECB两种分组模式加密明文数据。
同时也实现了在大素数域上的ECC算法,利用ECC实现生成用户公钥、私钥以及加密数据的高效、安全密钥管理机制。
通过将AES算法和ECC算法结合起来,实现混合加密,并应用在文件管理上体现其价值。
该系统内文件加密过程利用的是AES算法加密模块,在管理用户密钥方面利用了ECC算法加密模块,并实现多重加密来隐藏直接加密后密文内的重要参数。
该系统可以安全、有序的管理用户拥有的重要文件。
2024/6/15 15:01:35 1.53MB AES ECC 大素数域
1
实现SM4的加密和解密,加密前按PKCS#7对明文消息进行填充。
输入和输出要求:加密时,输出加密的每一轮的中间结果和最后的密文;
解密时,输出解密的每一轮的中间结果和最后的明文。
2024/6/6 10:25:44 7KB pytho sm4
1
共 74 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡