该设计任务是设计一个超外差接收机的解调电路,其中被解调信号先经过混频变成中频信号,然后通过包络检波电路进行解调。
系统的结构框图如图1所示。
图1超外差接收机的系统结构电路框图相关技术指标如下: ①本地振荡器可以使用高频信号源代替,输出信号频率为1000KHz,幅值为500mV的正弦波。
②调幅波信号由信号发生器产生,输出信号载波为535KHz正弦波,调幅度为0.5,调制信号为1KHz的正弦波。
③设计混频器能够很好的输出465kHz的中频信号,且不失真。
④中频放大器要有选频放大的作用,其输出信号载波幅值U>0.2V,信号不能失真。
⑤包络检波部分采用二极管包络检波器检波。
超外差接收机与一般高放式收音机相比,有很大的优越性,超外差接收机有整机灵敏度大、选择性显著提高、稳定性较高等优点,因此应用非常广泛,所以该课题具有很大的实用价值。
该课题涉及知识范围较广,涉及到高频电子电路的许多重点内容,通过这次课程设计能够学到高频电子电路的诸多方面,如:调幅波的调制解调、混频放大、检波等。
对于我们对知识的综合应用和掌握有很好的帮助,能更好的指导我们今后的学习,能让我们认识到理论与实际的联系。
1
本装置从使用简单、调整方便、功能完备角度出发,实现了波形由正常到失真的变化以及总谐波失真的测量。
装置由外界信号源、微控制器模块、采集测量模块、晶体管放大器模块、外接示波器组成。
运行时外接信号源频率1kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压ui供模块测量,通过单片机控制输出无失真以及顶部失真、底部失真、双向失真、交越失真4种失真波形,并且计算各种波形的总谐波失真。
2024/6/3 6:47:52 1MB 单片机
1
调频收音机的原理如上图所示,包括高频放大电路、混频电路、本振电路、中频放大电路、鉴频电路以及低频放大电路等。
主要技术指标如下:1、工作频率范围调频收音机的工作频率范围为88-108MHz,中频频率为10.7MHz。
2、灵敏度接收机接收微弱信号的能力称为灵敏度,一般用输入电压的大小来表示,接受的信号越小,灵敏度就越高。
一般生活中调频接收机的灵敏度为5-30uV。
3、选择性接收机从各种干扰信号中选出所需要的信号,或衰减不要的信号的能力称为选择性,单位用dB(分贝)表示,dB数越高选择性越好。
调频接收机中的中频抗干扰大于50dB。
4、通频带接收机的频率响应范围称为频率特性或通频带。
调频接收机的通频带一般为200KHz。
5、输出功率接收机的负载输出最大不失真(或非线性失真系数为给定值时)功率称为不失真功率。
输出功率应该≥100mW。
2024/5/23 13:43:09 6.58MB multis 调频收音机 包括各模块的
1
简单、容易做,已试验过的。
大家可以体验下!
2024/5/9 4:25:18 91KB 电吉他效果器
1
同态滤波器对图像进行增强处理,图像的同态滤波(Homomorphicfiltering)是把频率过滤和灰度变换结合起来的一种图像处理方法,其是以图像的照度/反射率模型作为频域处理的基础,通过调整图像灰度范围和增强对比度来改善图像的质量。
使用这种方法可以使图像处理符合人眼对于亮度响应的非线性特性,避免了直接对图像进行傅立叶变换处理的失真。
该方法消除图像上照明不均的问题,增强暗区的图像细节,同时又不损失亮区的图像细节。
2024/5/2 16:13:45 519B 图像增强
1
一、基础知识点:1.信号的频带宽度(带宽)与信号的脉冲宽度成反比,信号的脉冲宽度越宽,频带越窄;
反之,信号脉冲宽度越窄,其频带越宽。
2.系统对信号进行无失真传输时应满足的条件:①系统的幅频特性在整个频率范围()内应为常量。
②系统的相频特性在整个频率范围内应与成正比,比例系数为-
2024/2/12 12:45:28 615KB 各有各
1
经典的Chan-Vese(CV)模型已在许多应用中采用。
为了提高其适用性和效率,已经开发了许多概括,例如Chan和Vese的矢量值图像两阶段模型。
矢量CV模型使用类似于将彩色图像转换为灰色图像的方法集成多通道信息。
当对象及其背景的强度接近时,此参数无效。
在这项研究中,经典的CV模型通过使用从通道到通道分割图像的策略将其用于彩色图像。
提出了一种多通道分段组合(MSC)方法来集成多级集合的信息。
为了克服通常的从信道到信道的方法不能很好地考虑不同信道之间的相关性的缺点,引入了一种新颖的多信道比率变换(MRT)。
并提出了一种变体HSV(VHSV)色彩空间,以使每个通道反射区域信息而不会失真。
实验结果表明,该方案可以更准确地进行分割,并且在时间成本上具有优势。
此外,该方法仅在具有八段彩色图像的情况下才有效,但是可以通过使用多相模型对其进行增强。
2024/1/27 5:13:04 1.23MB 研究论文
1
1仿真电路图2静态分析3电压放大倍数4最大输出功率和效率5测量交越失真
2024/1/24 3:56:33 511KB 北邮 模电实验 OTL功率放大 仿真
1
合成孔径视觉测距是多目视觉测量与单目视觉测量相结合的产物。
合成孔径聚焦测距方法是一种通用的图像视觉方法,对光照、色彩、纹理等变化稳定性好,能实时处理,适用于复杂的交通管理工程,为车辆自动驾驶找到了一种新导航方法。
利用小孔成像模型摄像机共面阵列获取图像序列,根据图像序列获取各距离段所对应的桶型失真和像差校正叠加图像,计算基准图像中每个像素的邻域与每一幅校正叠加图像中相应区域的相似测度,并选取相似测度随像差校正叠加图像变化的范围大于一预设阈值的像素作为可测距像素,相似度最大的校正叠加图像所对应的距离段即为该可测距像素对应目标点所处的距离段。
实测数据表明该测距方法具有鲁棒性好,算法简单的优点。
1
仿真课程:1.高频LC谐振放大电路;
参数要求:(1).中心频率10.7MHz;
(2).谐振放大倍数>20dB;(3).BW=1MHz;(4).矩形系数<10;(5).噪声系数:<7dB;(6).输入,输出阻抗为50欧姆。
2.丙类功率放大电路;
参数要求:1.电源电压5V;2.输入信号300mv;3.频率6MHz的正弦信号;
4.50欧姆负载上输出4.6v峰峰值正弦电压信号。
仿真电路图:3.LC谐振放大电路;
参数要求:(1)振荡器输出为正弦波,波形无明显失真;(2)输出频率范围:15MHz~25MHz;(3)输出频率稳定度:优于10-3;(4)输出电压峰-峰值:Vp-p=1V±0.1V。
说明:1.其中题目一是在Multisim13中仿真的;
2.其中题目二是在Multisim14中仿真的;
3.其中题目三是在Multisim10中仿真的;
4.每个课题包含仿真,PPT,以及LATEX编译的报告,请忽略名字;
2024/1/4 6:11:35 14.28MB 高频
1
共 86 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡